Department of Behavioral Medicine & Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3026.
Department of Instructional Technology & Learning Sciences, Utah State University, Logan, UT 84322.
CBE Life Sci Educ. 2020 Sep;19(3):es5. doi: 10.1187/cbe.20-01-0016.
Structural equation modeling is an ideal data analytical tool for testing complex relationships among many analytical variables. It can simultaneously test multiple mediating and moderating relationships, estimate latent variables on the basis of related measures, and address practical issues such as nonnormality and missing data. To test the extent to which a hypothesized model provides an appropriate characterization of the collective relationships among its variables, researchers must assess the "fit" between the model and the sample's data. However, interpreting estimates of model fit is a problematic process. The traditional inferential test of model fit, the chi-square test, is biased due to sample size. Fit indices provide descriptive (i.e., noninferential) values of model fit (e.g., comparative fit index, root-mean-square error of approximation), but are unable to provide a definitive "acceptable" or "unacceptable" fit determination. Marcoulides and Yuan have introduced an equivalence-testing technique for assessing model fit that combines traditional descriptive fit indices with an inferential testing strategy in the form of confidence intervals to facilitate more definitive fit conclusions. In this paper, we explain this technique and demonstrate its application, highlighting the substantial advantages it offers the life sciences education community for drawing robust conclusions from structural equation models. A structural equation model and data set ( = 1902) drawn from previously published research are used to illustrate how to perform and interpret an equivalence test of model fit using Marcoulides and Yuan's approach.
结构方程模型是一种理想的数据分析工具,可用于测试多个分析变量之间的复杂关系。它可以同时测试多个中介和调节关系,根据相关指标估计潜在变量,并解决非正态和缺失数据等实际问题。为了测试假设模型在多大程度上适当地描述了其变量之间的综合关系,研究人员必须评估模型与样本数据之间的“拟合度”。然而,解释模型拟合度的估计是一个有问题的过程。由于样本量,传统的模型拟合推断检验(卡方检验)存在偏差。拟合指数提供了模型拟合的描述性(即非推断性)值(例如,比较拟合指数、近似均方根误差),但无法提供明确的“可接受”或“不可接受”拟合判断。Marcoulides 和 Yuan 提出了一种等效性检验技术,用于评估模型拟合度,该技术将传统的描述性拟合指数与置信区间形式的推断性检验策略相结合,以方便得出更明确的拟合结论。在本文中,我们解释了这种技术,并展示了它的应用,强调了它为生命科学教育界提供的从结构方程模型中得出有力结论的实质性优势。我们使用来自先前发表的研究的结构方程模型和数据集(n = 1902)来说明如何使用 Marcoulides 和 Yuan 的方法执行和解释模型拟合的等效性检验。