School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
J Mater Chem B. 2020 Jul 28;8(28):6100-6114. doi: 10.1039/d0tb00901f. Epub 2020 Jun 19.
Hydrogels are appealing biomaterials for regenerative medicine since biomimetic modifications of their polymeric network can provide unique physical properties and emulate the native extracellular matrix (ECM). Meanwhile, therapeutic metal ions, such as magnesium ions (Mg), not only regulate cellular behaviours but also stimulate local bone formation and healing. However, the absence of a meaningful macroporous structure and the uncompromising mechanical strength are still challenges. Herein, we designed a macroporous composite hydrogel based on mild and fast thiol-ene click reactions. The Pickering emulsion method was adopted to form a macroporous structure and introduce MgO nanoparticles (NPs). The results show that the composite hydrogel possesses good mechanical strength and an evenly distributed macroporous structure. MgO NPs stabilized at the oil/water interface not only function as effective emulsion stabilizers, but also enhance the mechanical properties of hydrogels and mediate the sustained release of Mg. In vitro cell experiments demonstrated that the composite hydrogel displays good biocompatibility. More importantly, the release of Mg ions from hydrogels can effectively promote the osteogenic differentiation of BMSCs. Furthermore, an in vivo study showed that macroporous hydrogels can provide a good extracellular matrix microenvironment for in situ osteogenesis and accelerate bone tissue regeneration.
水凝胶作为一种有吸引力的生物材料在再生医学中得到了广泛的应用,因为对其聚合物网络进行仿生修饰可以提供独特的物理性能,并模拟天然细胞外基质 (ECM)。同时,治疗性金属离子,如镁离子 (Mg),不仅可以调节细胞行为,还可以刺激局部骨形成和愈合。然而,缺乏有意义的大孔结构和不妥协的机械强度仍然是挑战。在此,我们设计了一种基于温和快速的硫醇-烯点击反应的大孔复合水凝胶。采用 Pickering 乳液法形成大孔结构并引入 MgO 纳米粒子 (NPs)。结果表明,复合水凝胶具有良好的机械强度和均匀分布的大孔结构。在油水界面稳定的 MgO NPs 不仅可以作为有效的乳液稳定剂,还可以增强水凝胶的机械性能并调节 Mg 的持续释放。体外细胞实验表明,复合水凝胶具有良好的生物相容性。更重要的是,水凝胶中镁离子的释放可以有效促进 BMSCs 的成骨分化。此外,体内研究表明,大孔水凝胶可以为原位成骨提供良好的细胞外基质微环境,加速骨组织再生。