Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, 25250, Prague West, Czech Republic.
Faculty of Science, Charles University in Prague, 12800, Prague, Czech Republic.
Nat Commun. 2020 Jun 19;11(1):3123. doi: 10.1038/s41467-020-16972-5.
Intracellular trafficking of organelles, driven by kinesin-1 stepping along microtubules, underpins essential cellular processes. In absence of other proteins on the microtubule surface, kinesin-1 performs micron-long runs. Under crowding conditions, however, kinesin-1 motility is drastically impeded. It is thus unclear how kinesin-1 acts as an efficient transporter in intracellular environments. Here, we demonstrate that TRAK1 (Milton), an adaptor protein essential for mitochondrial trafficking, activates kinesin-1 and increases robustness of kinesin-1 stepping on crowded microtubule surfaces. Interaction with TRAK1 i) facilitates kinesin-1 navigation around obstacles, ii) increases the probability of kinesin-1 passing through cohesive islands of tau and iii) increases the run length of kinesin-1 in cell lysate. We explain the enhanced motility by the observed direct interaction of TRAK1 with microtubules, providing an additional anchor for the kinesin-1-TRAK1 complex. Furthermore, TRAK1 enables mitochondrial transport in vitro. We propose adaptor-mediated tethering as a mechanism regulating kinesin-1 motility in various cellular environments.
细胞器的细胞内运输由沿着微管运动的驱动蛋白-1(kinesin-1)推动,为基本的细胞过程提供支撑。在微管表面没有其他蛋白质的情况下,驱动蛋白-1进行微米级的长程运动。然而,在拥挤的条件下,驱动蛋白-1的运动受到极大阻碍。因此,不清楚驱动蛋白-1如何在细胞内环境中作为有效的转运蛋白发挥作用。在这里,我们证明了 TRAK1(Milton),一种对线粒体运输至关重要的衔接蛋白,能够激活驱动蛋白-1,并增加驱动蛋白-1在拥挤的微管表面上进行稳健行走的能力。与 TRAK1 的相互作用:i)促进驱动蛋白-1绕过障碍物;ii)增加驱动蛋白-1穿过 tau 凝聚岛的概率;iii)增加驱动蛋白-1在细胞裂解物中的运行长度。我们通过观察到 TRAK1 与微管的直接相互作用,解释了这种增强的运动性,为驱动蛋白-1-TRAK1 复合物提供了额外的锚点。此外,TRAK1 能够在体外实现线粒体运输。我们提出了衔接蛋白介导的系链作为调节各种细胞环境中驱动蛋白-1运动性的机制。