Irimia-Vladu Mihai, Kanbur Yasin, Camaioni Fausta, Coppola Maria Elisabetta, Yumusak Cigdem, Irimia Cristian Vlad, Vlad Angela, Operamolla Alessandra, Farinola Gianluca M, Suranna Gian Paolo, González-Benitez Natalia, Molina Maria Carmen, Bautista Luis Fernando, Langhals Heinz, Stadlober Barbara, Głowacki Eric Daniel, Sariciftci Niyazi Serdar
Joanneum Research Forschungsgesellschaft mbH, Franz-Pichler Str. Nr. 30, 8160 Weiz, Austria.
Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenberger Str. Nr. 69, 4040 Linz, Austria.
Chem Mater. 2019 Sep 10;31(17):6315-6346. doi: 10.1021/acs.chemmater.9b01405. Epub 2019 Jul 11.
The electronics era is flourishing and morphing itself into Internet of Everything, IoE. At the same time, questions arise on the issue of electronic materials employed: especially their natural availability and low-cost fabrication, their functional stability in devices, and finally their desired biodegradation at the end of their life cycle. Hydrogen bonded pigments and natural dyes like indigo, anthraquinone and acridone are not only biodegradable and of bio-origin but also have functionality robustness and offer versatility in designing electronics and sensors components. With this Perspective, we intend to coalesce all the scattered reports on the above-mentioned classes of hydrogen bonded semiconductors, spanning across several disciplines and many active research groups. The article will comprise both published and unpublished results, on stability during aging, upon electrical, chemical and thermal stress, and will finish with an outlook section related to biological degradation and biological stability of selected hydrogen bonded molecules employed as semiconductors in organic electronic devices. We demonstrate that when the purity, the long-range order and the strength of chemical bonds, are considered, then the Hydrogen bonded organic semiconductors are the privileged class of materials having the potential to compete with inorganic semiconductors. As an experimental historical study of stability, we fabricated and characterized organic transistors from a material batch synthesized in 1932 and compared the results to a fresh material batch.
电子时代正蓬勃发展,并正演变成万物互联(IoE)。与此同时,关于所使用的电子材料出现了一些问题:尤其是它们的天然可获得性和低成本制造、它们在器件中的功能稳定性,以及最终在其生命周期结束时所需的生物降解性。氢键结合的颜料和天然染料,如靛蓝、蒽醌和吖啶酮,不仅可生物降解且源自生物,而且具有功能稳健性,并在设计电子和传感器组件方面具有通用性。基于此观点,我们打算整合关于上述各类氢键结合半导体的所有分散报告,这些报告跨越多个学科和许多活跃的研究小组。本文将包括已发表和未发表的结果,涉及老化过程中的稳定性、电、化学和热应力作用下的稳定性,并将以一个展望部分结束,该部分涉及用作有机电子器件半导体的选定氢键结合分子的生物降解和生物稳定性。我们证明,当考虑纯度、长程有序性和化学键强度时,氢键结合的有机半导体是有潜力与无机半导体竞争的一类特殊材料。作为稳定性的一项实验性历史研究,我们用1932年合成的一批材料制造并表征了有机晶体管,并将结果与一批新鲜材料进行了比较。