Suppr超能文献

基于密集残差集成网络的人工智能在X射线扫描中识别不同类型肩部植入物以实现个性化医疗

Artificial Intelligence-Based Recognition of Different Types of Shoulder Implants in X-ray Scans Based on Dense Residual Ensemble-Network for Personalized Medicine.

作者信息

Sultan Haseeb, Owais Muhammad, Park Chanhum, Mahmood Tahir, Haider Adnan, Park Kang Ryoung

机构信息

Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Korea.

出版信息

J Pers Med. 2021 May 27;11(6):482. doi: 10.3390/jpm11060482.

Abstract

Re-operations and revisions are often performed in patients who have undergone total shoulder arthroplasty (TSA) and reverse total shoulder arthroplasty (RTSA). This necessitates an accurate recognition of the implant model and manufacturer to set the correct apparatus and procedure according to the patient's anatomy as personalized medicine. Owing to unavailability and ambiguity in the medical data of a patient, expert surgeons identify the implants through a visual comparison of X-ray images. False steps cause heedlessness, morbidity, extra monetary weight, and a waste of time. Despite significant advancements in pattern recognition and deep learning in the medical field, extremely limited research has been conducted on classifying shoulder implants. To overcome these problems, we propose a robust deep learning-based framework comprised of an ensemble of convolutional neural networks (CNNs) to classify shoulder implants in X-ray images of different patients. Through our rotational invariant augmentation, the size of the training dataset is increased 36-fold. The modified ResNet and DenseNet are then combined deeply to form a dense residual ensemble-network (DRE-Net). To evaluate DRE-Net, experiments were executed on a 10-fold cross-validation on the openly available shoulder implant X-ray dataset. The experimental results showed that DRE-Net achieved an accuracy, F1-score, precision, and recall of 85.92%, 84.69%, 85.33%, and 84.11%, respectively, which were higher than those of the state-of-the-art methods. Moreover, we confirmed the generalization capability of our network by testing it in an open-world configuration, and the effectiveness of rotational invariant augmentation.

摘要

再次手术和翻修手术经常在接受全肩关节置换术(TSA)和反式全肩关节置换术(RTSA)的患者中进行。这就需要准确识别植入物的型号和制造商,以便根据患者的解剖结构设置正确的器械和手术流程,实现个性化医疗。由于患者医疗数据的不可获取性和模糊性,专家外科医生通过对X射线图像进行视觉比较来识别植入物。错误的步骤会导致疏忽、发病率增加、额外的经济负担和时间浪费。尽管医学领域在模式识别和深度学习方面取得了重大进展,但关于肩部植入物分类的研究却极为有限。为了克服这些问题,我们提出了一个基于深度学习的强大框架,该框架由卷积神经网络(CNN)集成组成,用于对不同患者的X射线图像中的肩部植入物进行分类。通过我们的旋转不变增强,训练数据集的大小增加了36倍。然后将改进的ResNet和DenseNet深度组合,形成一个密集残差集成网络(DRE-Net)。为了评估DRE-Net,我们在公开可用的肩部植入物X射线数据集上进行了10折交叉验证实验。实验结果表明,DRE-Net的准确率、F1分数、精确率和召回率分别达到了85.92%、84.69%、85.33%和84.11%,高于现有最先进的方法。此外,我们通过在开放世界配置中对网络进行测试,证实了我们网络的泛化能力以及旋转不变增强的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/425e/8229063/9f8cd6df5de1/jpm-11-00482-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验