Suppr超能文献

比较统计因果推断方法得出的效应估计值:以肥育牛的牛呼吸道疾病为例。

Comparing the estimates of effect obtained from statistical causal inference methods: An example using bovine respiratory disease in feedlot cattle.

机构信息

Department of Statistics, Iowa State University, Ames, Iowa, United States of America.

Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, United States of America.

出版信息

PLoS One. 2020 Jun 25;15(6):e0233960. doi: 10.1371/journal.pone.0233960. eCollection 2020.

Abstract

The causal effect of an exposure on an outcome of interest in an observational study cannot be estimated directly if the confounding variables are not controlled. Many approaches are available for estimating the causal effect of an exposure. In this manuscript, we demonstrate the advantages associated with using inverse probability weighting (IPW) and doubly robust estimation of the odds ratio in terms of reduced bias. IPW approach can be used to adjust for confounding variables and provide unbiased estimates of the exposure's causal effect. For cluster-structured data, as is common in animal populations, inverse conditional probability weighting (ICPW) approach can provide a robust estimation of the causal effect. Doubly robust estimation can provide a robust method even when the specification of the model form is uncertain. In this paper, the usage of IPW, ICPW, and doubly robust approaches are illustrated with a subset of data with complete covariates from the Australian-based National Bovine Respiratory Disease Initiative as well as simulated data. We evaluate the causal effect of prior bovine viral diarrhea exposure on bovine respiratory disease in feedlot cattle. The results show that the IPW, ICPW and doubly robust approaches would provide a more accurate estimation of the exposure effect than the traditional outcome regression model, and doubly robust approaches are the most preferable overall.

摘要

在观察性研究中,如果未控制混杂变量,则无法直接估计暴露对感兴趣结局的因果效应。有许多方法可用于估计暴露的因果效应。在本文中,我们展示了使用逆概率加权(Inverse Probability Weighting,简称 IPW)和比值比的双重稳健估计在减少偏差方面的优势。IPW 方法可用于调整混杂变量,并提供暴露的因果效应的无偏估计。对于聚类结构的数据,如在动物群体中常见的情况,逆条件概率加权(Inverse Conditional Probability Weighting,简称 ICPW)方法可提供因果效应的稳健估计。即使模型形式的规范不确定,双重稳健估计也可以提供稳健的方法。本文通过澳大利亚国家牛呼吸道疾病计划的完整协变量数据子集以及模拟数据,说明了 IPW、ICPW 和双重稳健方法的使用。我们评估了先前牛病毒性腹泻暴露对育肥牛牛呼吸道疾病的因果效应。结果表明,与传统的结局回归模型相比,IPW、ICPW 和双重稳健方法更能准确估计暴露效应,而且双重稳健方法总体上是最可取的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验