Suppr超能文献

氧化三甲胺(TMAO)微生物群途径对心血管疾病的影响。

Impact of trimethylamine N-oxide (TMAO) metaorganismal pathway on cardiovascular disease.

作者信息

Zhao Yongzhong, Wang Zeneng

机构信息

Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.

出版信息

J Lab Precis Med. 2020 Apr;5. doi: 10.21037/jlpm.2020.01.01. Epub 2020 Apr 20.

Abstract

Host-microbes interaction plays a crucial role in cardiovascular disease (CVD) pathogenesis, mechanistically via metaorganismal pathways. The trimethylamine N-oxide (TMAO) metaorganismal pathway is the most deeply investigated one, which comprises trimethylamine precursors, such as choline, trimethylamine lyase, trimethylamine, host liver FMO3, TMAO, and downstream effectors involving unfolded protein response (UPR), NF-κB and NLRP3 inflammasome. Accumulating data from clinical investigations of CVD patient cohorts and rodent models have supported the critical role of this metaorganismal pathway in the pathogenesis of CVD. We summarize an array of significant animal studies especially for arthrosclerosis with an emphasis on downstream molecular effectors of this metaorganismal pathway. We highlight clinical investigations of the prognostic value of plasma TMAO levels in predicting prospective risk for future major adverse cardiac events (MACE) indicated by composite end points of myocardial infarction (MI), stroke, heart failure (HF), other ischemic cardiovascular events, or death. Further, we discuss the latest advances of preclinical models targeting the gut microbiota trimethylamine lyase of the TMAO metaorganismal pathway for CVD intervention, as well as the catalog of gut microbiota TMA lyase genes and microbes in the human gut as the prerequisite for potential clinical intervention. In-depth characterization of TMAO metaorganismal pathway holds great promise for CVD clinical metagenomics, diagnostics and therapeutics.

摘要

宿主与微生物的相互作用在心血管疾病(CVD)的发病机制中起着关键作用,其机制是通过元生物体途径。三甲胺 N-氧化物(TMAO)元生物体途径是研究最深入的一条途径,它包括三甲胺前体,如胆碱、三甲胺裂解酶、三甲胺、宿主肝脏 FMO3、TMAO,以及涉及未折叠蛋白反应(UPR)、NF-κB 和 NLRP3 炎性小体的下游效应物。来自 CVD 患者队列和啮齿动物模型的临床研究积累的数据支持了这条元生物体途径在 CVD 发病机制中的关键作用。我们总结了一系列重要的动物研究,特别是关于动脉粥样硬化的研究,重点关注这条元生物体途径的下游分子效应物。我们强调了血浆 TMAO 水平在预测未来主要不良心脏事件(MACE)的前瞻性风险方面的预后价值的临床研究,这些事件由心肌梗死(MI)、中风、心力衰竭(HF)、其他缺血性心血管事件或死亡的复合终点表示。此外,我们讨论了针对 TMAO 元生物体途径的肠道微生物三甲胺裂解酶进行 CVD 干预的临床前模型的最新进展,以及人类肠道中肠道微生物 TMA 裂解酶基因和微生物的目录,作为潜在临床干预的前提条件。对 TMAO 元生物体途径的深入表征对 CVD 临床宏基因组学、诊断和治疗具有巨大的前景。

相似文献

1
Impact of trimethylamine N-oxide (TMAO) metaorganismal pathway on cardiovascular disease.
J Lab Precis Med. 2020 Apr;5. doi: 10.21037/jlpm.2020.01.01. Epub 2020 Apr 20.
3
Small molecule inhibition of gut microbial choline trimethylamine lyase activity alters host cholesterol and bile acid metabolism.
Am J Physiol Heart Circ Physiol. 2020 Jun 1;318(6):H1474-H1486. doi: 10.1152/ajpheart.00584.2019. Epub 2020 Apr 24.
4
Vascular endothelial tissue factor contributes to trimethylamine N-oxide-enhanced arterial thrombosis.
Cardiovasc Res. 2022 Jul 27;118(10):2367-2384. doi: 10.1093/cvr/cvab263.
6
Gut microbes impact stroke severity via the trimethylamine N-oxide pathway.
Cell Host Microbe. 2021 Jul 14;29(7):1199-1208.e5. doi: 10.1016/j.chom.2021.05.002. Epub 2021 Jun 16.
7
Gut Microbiota and Ischemic Stroke: The Role of Trimethylamine N-Oxide.
J Stroke. 2019 May;21(2):151-159. doi: 10.5853/jos.2019.00472. Epub 2019 May 31.
9
Metaorganismal nutrient metabolism as a basis of cardiovascular disease.
Curr Opin Lipidol. 2014 Feb;25(1):48-53. doi: 10.1097/MOL.0000000000000036.
10
Gut microbiota-derived trimethylamine-N-oxide: A bridge between dietary fatty acid and cardiovascular disease?
Food Res Int. 2020 Dec;138(Pt B):109812. doi: 10.1016/j.foodres.2020.109812. Epub 2020 Oct 21.

引用本文的文献

1
A Systemic Perspective of the Link Between Microbiota and Cardiac Health: A Literature Review.
Life (Basel). 2025 Aug 7;15(8):1251. doi: 10.3390/life15081251.
3
Endoplasmic Reticulum Stress in Bronchopulmonary Dysplasia: Contributor or Consequence?
Cells. 2024 Oct 26;13(21):1774. doi: 10.3390/cells13211774.
5
Gut microbiota's causative relationship with peripheral artery disease: a Mendelian randomization study.
Front Microbiol. 2024 Mar 5;15:1340262. doi: 10.3389/fmicb.2024.1340262. eCollection 2024.
7
Blueberry intervention mitigates detrimental microbial metabolite trimethylamine N-oxide by modulating gut microbes.
Biofactors. 2024 Mar-Apr;50(2):392-404. doi: 10.1002/biof.2014. Epub 2023 Nov 3.
8
Breaking bugs: gut microbes metabolize dietary components and modulate vascular health.
Crit Rev Food Sci Nutr. 2024;64(33):12411-12419. doi: 10.1080/10408398.2023.2251616. Epub 2023 Aug 31.
9
Gut-brain axis: Mechanisms and potential therapeutic strategies for ischemic stroke through immune functions.
Front Neurosci. 2023 Jan 27;17:1081347. doi: 10.3389/fnins.2023.1081347. eCollection 2023.
10
Multi-omics analysis identifies potential mechanisms by which high glucose accelerates macrophage foaming.
Mol Cell Biochem. 2023 Mar;478(3):665-678. doi: 10.1007/s11010-022-04542-w. Epub 2022 Aug 27.

本文引用的文献

1
Trimethylamine N-Oxide Binds and Activates PERK to Promote Metabolic Dysfunction.
Cell Metab. 2019 Dec 3;30(6):1141-1151.e5. doi: 10.1016/j.cmet.2019.08.021. Epub 2019 Sep 19.
2
Trimethylamine N-Oxide Exacerbates Cardiac Fibrosis via Activating the NLRP3 Inflammasome.
Front Physiol. 2019 Jul 9;10:866. doi: 10.3389/fphys.2019.00866. eCollection 2019.
4
Intestinal Microbiota in Cardiovascular Health and Disease: JACC State-of-the-Art Review.
J Am Coll Cardiol. 2019 Apr 30;73(16):2089-2105. doi: 10.1016/j.jacc.2019.03.024.
8
Plasma Trimethylamine N-Oxide as a Novel Biomarker for Plaque Rupture in Patients With ST-Segment-Elevation Myocardial Infarction.
Circ Cardiovasc Interv. 2019 Jan;12(1):e007281. doi: 10.1161/CIRCINTERVENTIONS.118.007281.
10
PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation.
Nature. 2018 Dec;564(7734):71-76. doi: 10.1038/s41586-018-0761-3. Epub 2018 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验