Suppr超能文献

基于机器学习的中枢神经系统肿瘤自动组织学诊断。

Automated histologic diagnosis of CNS tumors with machine learning.

机构信息

Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA.

Medical School, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

CNS Oncol. 2020 Jun;9(2):CNS56. doi: 10.2217/cns-2020-0003. Epub 2020 Jun 30.

Abstract

The discovery of a new mass involving the brain or spine typically prompts referral to a neurosurgeon to consider biopsy or surgical resection. Intraoperative decision-making depends significantly on the histologic diagnosis, which is often established when a small specimen is sent for immediate interpretation by a neuropathologist. Access to neuropathologists may be limited in resource-poor settings, which has prompted several groups to develop machine learning algorithms for automated interpretation. Most attempts have focused on fixed histopathology specimens, which do not apply in the intraoperative setting. The greatest potential for clinical impact probably lies in the automated diagnosis of intraoperative specimens. Successful future studies may use machine learning to automatically classify whole-slide intraoperative specimens among a wide array of potential diagnoses.

摘要

发现涉及大脑或脊柱的新肿块时,通常会转介给神经外科医生考虑进行活检或手术切除。术中的决策在很大程度上取决于组织学诊断,通常在通过神经病理学家进行即时解释时,会对小块标本进行诊断。在资源匮乏的环境中,神经病理学家的资源可能有限,这促使多个团队开发了用于自动解释的机器学习算法。大多数尝试都集中在固定的组织病理学标本上,而这些标本不适用于术中环境。在术中标本的自动诊断方面,可能具有最大的临床影响潜力。未来的成功研究可能会使用机器学习来自动对广泛的潜在诊断中的全幻灯片术中标本进行分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/237d/7341168/42a381c626e9/cns-09-56-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验