Lin Yannan, Wei Leihao, Han Simon X, Aberle Denise R, Hsu William
Department of Bioengineering, University of California, Los Angeles, CA, USA.
Medical & Imaging Informatics Group, Department of Radiological Sciences, University of California, Los Angeles, CA, USA.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11314. doi: 10.1117/12.2551220. Epub 2020 Mar 16.
We present an interpretable end-to-end computer-aided detection and diagnosis tool for pulmonary nodules on computed tomography (CT) using deep learning-based methods. The proposed network consists of a nodule detector and a nodule malignancy classifier. We used RetinaNet to train a nodule detector using 7,607 slices containing 4,234 nodule annotations and validated it using 2,323 slices containing 1,454 nodule annotations drawn from the LIDC-IDRI dataset. The average precision for the nodule class in the validation set reached 0.24 at an intersection over union (IoU) of 0.5. The trained nodule detector was externally validated using a UCLA dataset. We then used a hierarchical semantic convolutional neural network (HSCNN) to classify whether a nodule was benign or malignant and generate semantic (radiologist-interpretable) features (e.g., mean diameter, consistency, margin), training the model on 149 cases with diagnostic CTs collected from the same UCLA dataset. A total of 149 nodule-centered patches from the UCLA dataset were used to train the HSCNN. Using 5-fold cross validation and data augmentation, the mean AUC and mean accuracy in the validation set for predicting nodule malignancy achieved 0.89 and 0.74, respectively. Meanwhile, the mean accuracy for predicting nodule mean diameter, consistency, and margin were 0.59, 0.74, and 0.75, respectively. We have developed an initial end-to-end pipeline that automatically detects nodules ≥ 5 mm on CT studies and labels identified nodules with radiologist-interpreted features automatically.
我们展示了一种基于深度学习方法的可解释的端到端计算机辅助检测与诊断工具,用于计算机断层扫描(CT)上的肺结节。所提出的网络由结节检测器和结节恶性肿瘤分类器组成。我们使用RetinaNet,利用包含4234个结节标注的7607个切片训练结节检测器,并使用从LIDC-IDRI数据集中抽取的包含1454个结节标注的2323个切片对其进行验证。在交并比(IoU)为0.5时,验证集中结节类别的平均精度达到0.24。使用加州大学洛杉矶分校(UCLA)数据集对训练好的结节检测器进行外部验证。然后,我们使用分层语义卷积神经网络(HSCNN)对结节是良性还是恶性进行分类,并生成语义(放射科医生可解释的)特征(例如,平均直径、密度、边缘),使用从同一UCLA数据集中收集的149例具有诊断性CT的病例训练该模型。总共使用了来自UCLA数据集的149个以结节为中心的图像块来训练HSCNN。使用5折交叉验证和数据增强,预测结节恶性肿瘤的验证集中的平均AUC和平均准确率分别达到0.89和0.74。同时,预测结节平均直径、密度和边缘的平均准确率分别为0.59、0.74和0.75。我们开发了一个初始的端到端流程,可在CT研究中自动检测≥5mm的结节,并自动用放射科医生解释的特征标记已识别的结节。