Suppr超能文献

评估术后环境中疼痛评估工具的前瞻性研究:算法测试与改进方案

Prospective Study Evaluating a Pain Assessment Tool in a Postoperative Environment: Protocol for Algorithm Testing and Enhancement.

作者信息

Kasaeyan Naeini Emad, Jiang Mingzhe, Syrjälä Elise, Calderon Michael-David, Mieronkoski Riitta, Zheng Kai, Dutt Nikil, Liljeberg Pasi, Salanterä Sanna, Nelson Ariana M, Rahmani Amir M

机构信息

Department of Computer Science, University of California, Irvine, Irvine, CA, United States.

Department of Future Technology, University of Turku, Turku, Finland.

出版信息

JMIR Res Protoc. 2020 Jul 1;9(7):e17783. doi: 10.2196/17783.

Abstract

BACKGROUND

Assessment of pain is critical to its optimal treatment. There is a high demand for accurate objective pain assessment for effectively optimizing pain management interventions. However, pain is a multivalent, dynamic, and ambiguous phenomenon that is difficult to quantify, particularly when the patient's ability to communicate is limited. The criterion standard of pain intensity assessment is self-reporting. However, this unidimensional model is disparaged for its oversimplification and limited applicability in several vulnerable patient populations. Researchers have attempted to develop objective pain assessment tools through analysis of physiological pain indicators, such as electrocardiography, electromyography, photoplethysmography, and electrodermal activity. However, pain assessment by using only these signals can be unreliable, as various other factors alter these vital signs and the adaptation of vital signs to pain stimulation varies from person to person. Objective pain assessment using behavioral signs such as facial expressions has recently gained attention.

OBJECTIVE

Our objective is to further the development and research of a pain assessment tool for use with patients who are likely experiencing mild to moderate pain. We will collect observational data through wearable technologies, measuring facial electromyography, electrocardiography, photoplethysmography, and electrodermal activity.

METHODS

This protocol focuses on the second phase of a larger study of multimodal signal acquisition through facial muscle electrical activity, cardiac electrical activity, and electrodermal activity as indicators of pain and for building predictive models. We used state-of-the-art standard sensors to measure bioelectrical electromyographic signals and changes in heart rate, respiratory rate, and oxygen saturation. Based on the results, we further developed the pain assessment tool and reconstituted it with modern wearable sensors, devices, and algorithms. In this second phase, we will test the smart pain assessment tool in communicative patients after elective surgery in the recovery room.

RESULTS

Our human research protections application for institutional review board review was approved for this part of the study. We expect to have the pain assessment tool developed and available for further research in early 2021. Preliminary results will be ready for publication during fall 2020.

CONCLUSIONS

This study will help to further the development of and research on an objective pain assessment tool for monitoring patients likely experiencing mild to moderate pain.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/17783.

摘要

背景

疼痛评估对于其最佳治疗至关重要。为有效优化疼痛管理干预措施,对准确的客观疼痛评估有很高的需求。然而,疼痛是一种多价、动态且模糊的现象,难以量化,尤其是当患者的沟通能力有限时。疼痛强度评估的标准方法是自我报告。然而,这种单维模型因其过于简单化以及在一些脆弱患者群体中的适用性有限而受到诟病。研究人员试图通过分析生理疼痛指标来开发客观疼痛评估工具,如心电图、肌电图、光电容积脉搏波描记法和皮肤电活动。然而,仅使用这些信号进行疼痛评估可能不可靠,因为各种其他因素会改变这些生命体征,并且生命体征对疼痛刺激的适应性因人而异。最近,使用面部表情等行为体征进行客观疼痛评估受到了关注。

目的

我们的目标是进一步开发和研究一种用于可能正在经历轻至中度疼痛患者的疼痛评估工具。我们将通过可穿戴技术收集观察数据,测量面部肌电图、心电图、光电容积脉搏波描记法和皮肤电活动。

方法

本方案聚焦于一项更大规模研究的第二阶段,该研究通过面部肌肉电活动、心脏电活动和皮肤电活动作为疼痛指标进行多模态信号采集,并建立预测模型。我们使用了最先进的标准传感器来测量生物电肌电信号以及心率、呼吸频率和血氧饱和度的变化。基于这些结果,我们进一步开发了疼痛评估工具,并用现代可穿戴传感器、设备和算法对其进行了重构。在第二阶段,我们将在恢复室对择期手术后能够交流的患者测试这种智能疼痛评估工具。

结果

我们针对该研究这一部分向机构审查委员会提交的人体研究保护申请获得批准。我们预计在2021年初开发出疼痛评估工具并可供进一步研究使用。初步结果将在2020年秋季准备好发表。

结论

本研究将有助于进一步开发和研究一种用于监测可能正在经历轻至中度疼痛患者的客观疼痛评估工具。

国际注册报告识别码(IRRID):DERR1-10.2196/17783

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/620a/7367536/b1674728b315/resprot_v9i7e17783_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验