Suppr超能文献

基于领域特定提示可提高基于深度学习的 CT 体部分割的稳健性。

Domain-specific cues improve robustness of deep learning-based segmentation of CT volumes.

机构信息

AICURA medical, Bessemerstrasse 22, 12103, Berlin, Germany.

Technische Fakultät, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany.

出版信息

Sci Rep. 2020 Jul 1;10(1):10712. doi: 10.1038/s41598-020-67544-y.

Abstract

Machine learning has considerably improved medical image analysis in the past years. Although data-driven approaches are intrinsically adaptive and thus, generic, they often do not perform the same way on data from different imaging modalities. In particular computed tomography (CT) data poses many challenges to medical image segmentation based on convolutional neural networks (CNNs), mostly due to the broad dynamic range of intensities and the varying number of recorded slices of CT volumes. In this paper, we address these issues with a framework that adds domain-specific data preprocessing and augmentation to state-of-the-art CNN architectures. Our major focus is to stabilise the prediction performance over samples as a mandatory requirement for use in automated and semi-automated workflows in the clinical environment. To validate the architecture-independent effects of our approach we compare a neural architecture based on dilated convolutions for parallel multi-scale processing (a modified Mixed-Scale Dense Network: MS-D Net) to traditional scaling operations (a modified U-Net). Finally, we show that an ensemble model combines the strengths across different individual methods. Our framework is simple to implement into existing deep learning pipelines for CT analysis. It performs well on a range of tasks such as liver and kidney segmentation, without significant differences in prediction performance on strongly differing volume sizes and varying slice thickness. Thus our framework is an essential step towards performing robust segmentation of unknown real-world samples.

摘要

在过去的几年中,机器学习极大地改进了医学图像分析。尽管基于数据驱动的方法本质上是自适应的,因此具有通用性,但它们通常无法在来自不同成像方式的数据上以相同的方式执行。特别是计算机断层扫描 (CT) 数据对基于卷积神经网络 (CNN) 的医学图像分割提出了许多挑战,主要是由于强度的宽动态范围和 CT 体积记录的切片数量不同。在本文中,我们通过一个框架来解决这些问题,该框架为最先进的 CNN 架构添加了特定于域的数据预处理和增强。我们的主要重点是稳定预测性能,以满足在临床环境中用于自动化和半自动工作流程的强制性要求。为了验证我们方法的架构独立效果,我们将基于扩张卷积的神经网络架构(一种经过修改的混合尺度密集网络 (MS-D Net))与传统的缩放操作(一种经过修改的 U-Net)进行比较。最后,我们证明了集成模型结合了不同个体方法的优势。我们的框架易于实现到现有的 CT 分析深度学习管道中。它在一系列任务中表现良好,例如肝脏和肾脏分割,在体积大小和切片厚度变化较大的情况下,预测性能没有显著差异。因此,我们的框架是实现对未知真实世界样本进行稳健分割的重要步骤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcd8/7329868/96fa198220f3/41598_2020_67544_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验