Suppr超能文献

基于核心蛋白家族的宏基因组分类方法——Core-Kaiju。

Taxonomic classification method for metagenomics based on core protein families with Core-Kaiju.

机构信息

Physics and Astronomy Department, LIPh Lab, University of Padova, Via Marzolo 8, 35131 Padova, Italy.

Mathematics Department, University of Padova, via Trieste 63, 35121 Padova, Italy.

出版信息

Nucleic Acids Res. 2020 Sep 18;48(16):e93. doi: 10.1093/nar/gkaa568.

Abstract

Characterizing species diversity and composition of bacteria hosted by biota is revolutionizing our understanding of the role of symbiotic interactions in ecosystems. Determining microbiomes diversity implies the assignment of individual reads to taxa by comparison to reference databases. Although computational methods aimed at identifying the microbe(s) taxa are available, it is well known that inferences using different methods can vary widely depending on various biases. In this study, we first apply and compare different bioinformatics methods based on 16S ribosomal RNA gene and shotgun sequencing to three mock communities of bacteria, of which the compositions are known. We show that none of these methods can infer both the true number of taxa and their abundances. We thus propose a novel approach, named Core-Kaiju, which combines the power of shotgun metagenomics data with a more focused marker gene classification method similar to 16S, but based on emergent statistics of core protein domain families. We thus test the proposed method on various mock communities and we show that Core-Kaiju reliably predicts both number of taxa and abundances. Finally, we apply our method on human gut samples, showing how Core-Kaiju may give more accurate ecological characterization and a fresh view on real microbiomes.

摘要

描述生物体内所寄居细菌的物种多样性和组成正在彻底改变我们对共生相互作用在生态系统中所起作用的理解。确定微生物组的多样性意味着通过与参考数据库进行比较,将个体读取分配给分类群。尽管已经有针对识别微生物分类群的计算方法,但众所周知,使用不同方法进行推断会因各种偏差而有很大差异。在这项研究中,我们首先应用并比较了基于 16S 核糖体 RNA 基因和鸟枪法测序的三种模拟细菌群落的不同生物信息学方法,这些群落的组成是已知的。我们表明,这些方法都无法推断出真实的分类群数量及其丰度。因此,我们提出了一种新方法,名为 Core-Kaiju,它结合了鸟枪法宏基因组数据的强大功能和一种更专注的标记基因分类方法,类似于 16S,但基于核心蛋白结构域家族的新兴统计数据。因此,我们在各种模拟群落上测试了所提出的方法,结果表明 Core-Kaiju 可靠地预测了分类群的数量和丰度。最后,我们将我们的方法应用于人类肠道样本,展示了 Core-Kaiju 如何提供更准确的生态特征描述和对真实微生物组的新视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a237/7498351/0cc6d5f09528/gkaa568fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验