Suppr超能文献

基于电纺压电聚合物纳米纤维的仿生多共振声纳器件。

Bioinspired Multiresonant Acoustic Devices Based on Electrospun Piezoelectric Polymeric Nanofibers.

机构信息

UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom.

Electrical and Electronic Engineering, London South Bank University, London SE1 0AA, United Kingdom.

出版信息

ACS Appl Mater Interfaces. 2020 Aug 5;12(31):34643-34657. doi: 10.1021/acsami.0c09238. Epub 2020 Jul 23.

Abstract

Cochlear hair cells are critical for the conversion of acoustic into electrical signals and their dysfunction is a primary cause of acquired hearing impairments, which worsen with aging. Piezoelectric materials can reproduce the acoustic-electrical transduction properties of the cochlea and represent promising candidates for future cochlear prostheses. The majority of piezoelectric hearing devices so far developed are based on thin films, which have not managed to simultaneously provide the desired flexibility, high sensitivity, wide frequency selectivity, and biocompatibility. To overcome these issues, we hypothesized that fibrous membranes made up of polymeric piezoelectric biocompatible nanofibers could be employed to mimic the function of the basilar membrane, by selectively vibrating in response to different frequencies of sound and transmitting the resulting electrical impulses to the vestibulocochlear nerve. In this study, poly(vinylidene fluoride-trifluoroethylene) piezoelectric nanofiber-based acoustic circular sensors were designed and fabricated using the electrospinning technique. The performance of the sensors was investigated with particular focus on the identification of the resonance frequencies and acoustic-electrical conversion in fibrous membrane with different size and fiber orientation. The voltage output (1-17 mV) varied in the range of low resonance frequency (100-400 Hz) depending on the diameter of the macroscale sensors and alignment of the fibers. The devices developed can be regarded as a proof-of-concept demonstrating the possibility of using piezoelectric fibers to convert acoustic waves into electrical signals, through possible synergistic effects of piezoelectricity and triboelectricity. The study has paved the way for the development of self-powered nanofibrous implantable auditory sensors.

摘要

耳蜗毛细胞是将声音信号转化为电信号的关键,其功能障碍是获得性听力损伤的主要原因,而听力损伤会随着年龄的增长而恶化。压电材料可以再现耳蜗的声电转换特性,是未来耳蜗假体的有前途的候选材料。迄今为止开发的大多数压电听力设备都是基于薄膜的,这些薄膜未能同时提供所需的灵活性、高灵敏度、宽频率选择性和生物相容性。为了克服这些问题,我们假设由聚合物压电生物相容性纳米纤维组成的纤维膜可以通过选择性地响应不同频率的声音振动并将产生的电脉冲传输到前庭耳蜗神经来模拟基底膜的功能。在这项研究中,使用静电纺丝技术设计和制造了基于聚(偏二氟乙烯-三氟乙烯)压电纳米纤维的声圆传感器。特别关注不同尺寸和纤维取向的纤维膜的共振频率和声电转换来研究传感器的性能。传感器的电压输出(1-17 mV)在低共振频率(100-400 Hz)范围内变化,这取决于宏观传感器的直径和纤维的排列。所开发的器件可以被视为一个概念验证,证明了使用压电纤维将声波转换为电信号的可能性,这可能是压电和摩擦电的协同作用。该研究为开发自供电纳米纤维植入式听觉传感器铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验