Suppr超能文献

我们能相信得分图吗?

Can We Trust Score Plots?

作者信息

Bevilacqua Marta, Bro Rasmus

机构信息

Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark.

出版信息

Metabolites. 2020 Jul 8;10(7):278. doi: 10.3390/metabo10070278.

Abstract

In this paper, we discuss the validity of using score plots of component models such as partial least squares regression, especially when these models are used for building classification models, and models derived from partial least squares regression for discriminant analysis (PLS-DA). Using examples and simulations, it is shown that the currently accepted practice of showing score plots from calibration models may give misleading interpretations. It is suggested and shown that the problem can be solved by replacing the currently used calibrated score plots with cross-validated score plots.

摘要

在本文中,我们讨论了使用诸如偏最小二乘回归等成分模型的得分图的有效性,特别是当这些模型用于构建分类模型以及用于判别分析的偏最小二乘回归衍生模型(PLS-DA)时。通过实例和模拟表明,目前展示校准模型得分图的公认做法可能会给出误导性的解释。建议并表明,通过用交叉验证得分图取代当前使用的校准得分图可以解决该问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83bb/7408101/47549cc064e1/metabolites-10-00278-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验