Suppr超能文献

MiMeJF:耦合矩阵和张量分解(CMTF)在增强微生物组-代谢组多组学分析中的应用。

MiMeJF: Application of Coupled Matrix and Tensor Factorization (CMTF) for Enhanced Microbiome-Metabolome Multi-Omic Analysis.

作者信息

Ou Zheyuan, Fu Xi, Norbäck Dan, Lin Ruqin, Wen Jikai, Sun Yu

机构信息

Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.

Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510006, China.

出版信息

Metabolites. 2025 Jan 14;15(1):51. doi: 10.3390/metabo15010051.

Abstract

: The integration of microbiome and metabolome data could unveil profound insights into biological processes. However, widely used multi-omic data analyses often employ a stepwise mining approach, failing to harness the full potential of multi-omic datasets and leading to reduced detection accuracy. Synergistic analysis incorporating microbiome/metabolome data are essential for deeper understanding. : This study introduces a Coupled Matrix and Tensor Factorization (CMTF) framework for the joint analysis of microbiome and metabolome data, overcoming these limitations. Two CMTF frameworks were developed to factorize microbial taxa, functional pathways, and metabolites into latent factors, facilitating dimension reduction and biomarker identification. Validation was conducted using three diverse microbiome/metabolome datasets, including built environments and human gut samples from inflammatory bowel disease (IBD) and COVID-19 studies. : Our results revealed biologically meaningful biomarkers, such as and acylcarnitines associated with IBD and pyroglutamic acid and p-cresol associated with COVID-19 outcomes, which provide new avenues for research. The CMTF framework consistently outperformed traditional methods in both dimension reduction and biomarker detection, offering a robust tool for uncovering biologically relevant insights. : Despite its stringent data requirements, including the reliance on stratified microbial-based pathway abundances and taxa-level contributions, this approach provides a significant step forward in multi-omics integration and analysis, with potential applications across biomedical, environmental, and agricultural research.

摘要

微生物组和代谢组数据的整合能够揭示生物过程的深刻见解。然而,广泛使用的多组学数据分析通常采用逐步挖掘方法,未能充分利用多组学数据集的全部潜力,导致检测准确性降低。纳入微生物组/代谢组数据的协同分析对于更深入的理解至关重要。

本研究引入了一种耦合矩阵和张量分解(CMTF)框架,用于微生物组和代谢组数据的联合分析,克服了这些局限性。开发了两个CMTF框架,将微生物分类群、功能途径和代谢物分解为潜在因素,便于降维和生物标志物识别。使用三个不同的微生物组/代谢组数据集进行了验证,包括来自炎症性肠病(IBD)和COVID-19研究的建筑环境和人体肠道样本。

我们的结果揭示了具有生物学意义的生物标志物,如与IBD相关的[具体物质未给出]和酰基肉碱,以及与COVID-19结果相关的焦谷氨酸和对甲酚,这为研究提供了新途径。CMTF框架在降维和生物标志物检测方面始终优于传统方法,为揭示生物学相关见解提供了一个强大的工具。

尽管该方法对数据有严格要求,包括依赖基于分层微生物的途径丰度和分类群水平贡献,但这种方法在多组学整合和分析方面迈出了重要一步,在生物医学、环境和农业研究中具有潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60b7/11767930/8187ef33b1c8/metabolites-15-00051-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验