深度学习解码差异基因表达的原理。

Deep learning decodes the principles of differential gene expression.

作者信息

Tasaki Shinya, Gaiteri Chris, Mostafavi Sara, Wang Yanling

机构信息

Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago IL, USA.

University of British Columbia, Vancouver, British Columbia, Canada.

出版信息

Nat Mach Intell. 2020 Jul;2(7):376-386. doi: 10.1038/s42256-020-0201-6. Epub 2020 Jul 6.

Abstract

Identifying the molecular mechanisms that control differential gene expression (DE) is a major goal of basic and disease biology. We develop a systems biology model to predict DE, and mine the biological basis of the factors that influence predicted gene expression, in order to understand how it may be generated. This model, called , utilizes deep learning to predict DE based on genome-wide binding sites on RNAs and promoters. Ranking predictive factors from the DEcode indicates that clinically relevant expression changes between thousands of individuals can be predicted mainly through the joint action of post-transcriptional RNA-binding factors. We also show the broad potential applications of DEcode to generate biological insights, by predicting DE between tissues, differential transcript-usage, and drivers of aging throughout the human lifespan, of gene coexpression relationships on a genome-wide scale, and of frequently DE genes across diverse conditions. Researchers can freely utilize DEcode to identify influential molecular mechanisms for any human expression data - www.differentialexpression.org.

摘要

识别控制差异基因表达(DE)的分子机制是基础生物学和疾病生物学的主要目标。我们开发了一个系统生物学模型来预测DE,并挖掘影响预测基因表达的因素的生物学基础,以便了解其产生方式。这个名为DEcode的模型利用深度学习,根据RNA和启动子上的全基因组结合位点来预测DE。对DEcode的预测因子进行排名表明,数千个体之间临床上相关的表达变化主要可通过转录后RNA结合因子的联合作用来预测。我们还展示了DEcode通过预测组织间的DE、差异转录本使用情况、人类整个生命周期中的衰老驱动因素、全基因组范围内的基因共表达关系以及不同条件下频繁发生DE的基因,从而产生生物学见解的广泛潜在应用。研究人员可以免费使用DEcode来识别任何人类表达数据中有影响力的分子机制——www.differentialexpression.org。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce63/7363043/e1d900abf3e7/nihms-1604164-f0007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索