Suppr超能文献

基质硬度调节三维水凝胶中患者来源的胶质母细胞瘤细胞命运。

Matrix Stiffness Modulates Patient-Derived Glioblastoma Cell Fates in Three-Dimensional Hydrogels.

机构信息

Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, California, USA.

Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA.

出版信息

Tissue Eng Part A. 2021 Mar;27(5-6):390-401. doi: 10.1089/ten.TEA.2020.0110. Epub 2020 Nov 6.

Abstract

Cancer progression is known to be accompanied by changes in tissue stiffness. Previous studies have primarily employed immortalized cell lines and 2D hydrogel substrates, which do not recapitulate the 3D tumor niche. How matrix stiffness affects patient-derived cancer cell fate in 3D remains unclear. In this study, we report a matrix metalloproteinase-degradable poly(ethylene-glycol)-based hydrogel platform with brain-mimicking biochemical cues and tunable stiffness (40-26,600 Pa) for 3D culture of patient-derived glioblastoma xenograft (PDTX GBM) cells. Our results demonstrate that decreasing hydrogel stiffness enhanced PDTX GBM cell proliferation, and hydrogels with stiffness 240 Pa and below supported robust PDTX GBM cell spreading in 3D. PDTX GBM cells encapsulated in hydrogels demonstrated higher drug resistance than 2D control, and increasing hydrogel stiffness further enhanced drug resistance. Such 3D hydrogel platforms may provide a valuable tool for mechanistic studies of the role of niche cues in modulating cancer progression for different cancer types.

摘要

癌症的发展伴随着组织硬度的变化。以前的研究主要采用永生化细胞系和二维水凝胶基质,无法重现三维肿瘤微环境。基质硬度如何影响 3D 中患者来源的癌细胞的命运尚不清楚。在这项研究中,我们报告了一种基质金属蛋白酶可降解的聚(乙二醇)基水凝胶平台,具有脑模拟生化线索和可调节的硬度(40-26,600 Pa),用于 3D 培养患者来源的胶质母细胞瘤异种移植物(PDTX GBM)细胞。我们的结果表明,降低水凝胶硬度可增强 PDTX GBM 细胞的增殖,并且硬度为 240 Pa 及以下的水凝胶可支持 PDTX GBM 细胞在 3D 中强有力的扩展。包封在水凝胶中的 PDTX GBM 细胞比 2D 对照具有更高的耐药性,并且增加水凝胶硬度进一步增强了耐药性。这种 3D 水凝胶平台可为研究微环境线索在调节不同癌症类型的癌症进展中的作用提供有价值的工具。

相似文献

1
Matrix Stiffness Modulates Patient-Derived Glioblastoma Cell Fates in Three-Dimensional Hydrogels.
Tissue Eng Part A. 2021 Mar;27(5-6):390-401. doi: 10.1089/ten.TEA.2020.0110. Epub 2020 Nov 6.
2
Gradient hydrogels for screening stiffness effects on patient-derived glioblastoma xenograft cellfates in 3D.
J Biomed Mater Res A. 2021 Jun;109(6):1027-1035. doi: 10.1002/jbm.a.37093. Epub 2020 Sep 21.
5
Effect of matrix metalloproteinase-mediated matrix degradation on glioblastoma cell behavior in 3D PEG-based hydrogels.
J Biomed Mater Res A. 2017 Mar;105(3):770-778. doi: 10.1002/jbm.a.35947. Epub 2016 Nov 18.
6
Glioblastoma spheroid growth and chemotherapeutic responses in single and dual-stiffness hydrogels.
Acta Biomater. 2023 Jun;163:400-414. doi: 10.1016/j.actbio.2022.05.048. Epub 2022 Jun 1.
7
A comparative study of brain tumor cells from different age and anatomical locations using 3D biomimetic hydrogels.
Acta Biomater. 2020 Oct 15;116:201-208. doi: 10.1016/j.actbio.2020.09.007. Epub 2020 Sep 7.
8
Hydrogel matrix presence and composition influence drug responses of encapsulated glioblastoma spheroids.
Acta Biomater. 2021 Sep 15;132:437-447. doi: 10.1016/j.actbio.2021.05.005. Epub 2021 May 16.
9
Mimicking brain tumor-vasculature microanatomical architecture via co-culture of brain tumor and endothelial cells in 3D hydrogels.
Biomaterials. 2019 May;202:35-44. doi: 10.1016/j.biomaterials.2019.02.024. Epub 2019 Feb 27.

引用本文的文献

1
Ioning out glioblastoma: ferroptosis mechanisms and therapeutic frontiers.
Cell Death Discov. 2025 Aug 26;11(1):407. doi: 10.1038/s41420-025-02711-6.
2
Enhanced anti-tumor efficacy of "IL-15 and CCL19" -secreting CAR-T cells in human glioblastoma orthotopic xenograft model.
Front Oncol. 2025 Mar 19;15:1539055. doi: 10.3389/fonc.2025.1539055. eCollection 2025.
3
Biofabrication of Tunable 3D Hydrogel for Investigating the Matrix Stiffness Impact on Breast Cancer Chemotherapy Resistance.
ACS Biomater Sci Eng. 2025 Mar 10;11(3):1417-1431. doi: 10.1021/acsbiomaterials.4c01636. Epub 2025 Feb 27.
4
Emerging Approaches in Glioblastoma Treatment: Modulating the Extracellular Matrix Through Nanotechnology.
Pharmaceutics. 2025 Jan 21;17(2):142. doi: 10.3390/pharmaceutics17020142.
5
Interactions between Ploidy and Resource Availability Shape Clonal Evolution in Glioblastoma.
Cancer Res. 2025 Apr 15;85(8):1544-1559. doi: 10.1158/0008-5472.CAN-24-0401.
7
Photo/thermo-sensitive chitosan and gelatin-based interpenetrating polymer network for mimicking muscle tissue extracellular matrix.
Heliyon. 2024 Oct 24;10(21):e39820. doi: 10.1016/j.heliyon.2024.e39820. eCollection 2024 Nov 15.
8
Recent Developments in Glioblastoma-On-A-Chip for Advanced Drug Screening Applications.
Small. 2025 Jan;21(1):e2405511. doi: 10.1002/smll.202405511. Epub 2024 Nov 13.
10
Neuroinflammation in Glioblastoma: Progress and Perspectives.
Brain Sci. 2024 Jul 9;14(7):687. doi: 10.3390/brainsci14070687.

本文引用的文献

1
Current promising treatment strategy for glioblastoma multiform: A review.
Oncol Rev. 2019 Jul 25;13(2):417. doi: 10.4081/oncol.2019.417. eCollection 2019 Jul 22.
2
Mimicking brain tumor-vasculature microanatomical architecture via co-culture of brain tumor and endothelial cells in 3D hydrogels.
Biomaterials. 2019 May;202:35-44. doi: 10.1016/j.biomaterials.2019.02.024. Epub 2019 Feb 27.
3
Matrix mechanical plasticity regulates cancer cell migration through confining microenvironments.
Nat Commun. 2018 Oct 8;9(1):4144. doi: 10.1038/s41467-018-06641-z.
4
Gelatin-Based Microribbon Hydrogels Accelerate Cartilage Formation by Mesenchymal Stem Cells in Three Dimensions.
Tissue Eng Part A. 2018 Nov;24(21-22):1631-1640. doi: 10.1089/ten.TEA.2018.0011.
5
Effect of matrix metalloproteinase-mediated matrix degradation on glioblastoma cell behavior in 3D PEG-based hydrogels.
J Biomed Mater Res A. 2017 Mar;105(3):770-778. doi: 10.1002/jbm.a.35947. Epub 2016 Nov 18.
6
Glioblastoma multiforme: Effect of hypoxia and hypoxia inducible factors on therapeutic approaches.
Oncol Lett. 2016 Oct;12(4):2283-2288. doi: 10.3892/ol.2016.4952. Epub 2016 Aug 4.
8
A practical guide to hydrogels for cell culture.
Nat Methods. 2016 Apr 28;13(5):405-14. doi: 10.1038/nmeth.3839.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验