Suppr超能文献

通过在 3D 水凝胶中共培养脑肿瘤细胞和内皮细胞来模拟脑肿瘤-血管微解剖结构。

Mimicking brain tumor-vasculature microanatomical architecture via co-culture of brain tumor and endothelial cells in 3D hydrogels.

机构信息

Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.

Department of Orthopaedic Surgery, Stanford University, Stanford, CA, 94305, USA.

出版信息

Biomaterials. 2019 May;202:35-44. doi: 10.1016/j.biomaterials.2019.02.024. Epub 2019 Feb 27.

Abstract

Glioblastoma (GBM) is an aggressive malignant brain tumor with median survival of 12 months and 5-year survival rate less than 5%. GBM is highly vascularized, and the interactions between tumor and endothelial cells play an important role in driving tumor growth. To study tumor-endothelial interactions, the gold standard co-culture model is transwell culture, which fails to recapitulate the biochemical or physical cues found in tumor niche. Recently, we reported the development of poly(ethylene-glycol)-based hydrogels as 3D niche that supported GBM proliferation and invasion. To further mimic the microanatomical architecture of tumor-endothelial interactions in vivo, here we developed a hydrogel-based co-culture model that mimics the spatial organization of tumor and endothelial cells. To increase the physiological relevance, patient-derived GBM cells and mouse brain endothelial cells were used as model cell types. Using hydrolytically-degradable alginate fibers as porogens, endothelial cells were deployed and patterned into vessel-like structures in 3D hydrogels with high cell viability and retention of endothelial phenotype. Co-culture led to a significant increase in GBM cell proliferation and decrease in endothelial cell expression of cell adhesion proteins. In summary, we have developed a novel 3D co-culture model that mimics the in vivo spatial organization of brain tumor and endothelial cells. Such model may provide a valuable tool for future mechanistic studies to elucidate the effects of tumor-endothelial interactions on tumor progression in a more physiologically-relevant manner.

摘要

胶质母细胞瘤(GBM)是一种侵袭性恶性脑肿瘤,中位生存期为 12 个月,5 年生存率低于 5%。GBM 高度血管化,肿瘤细胞与内皮细胞的相互作用在驱动肿瘤生长中起着重要作用。为了研究肿瘤-内皮细胞的相互作用,金标准的共培养模型是 Transwell 培养,但不能再现肿瘤微环境中发现的生化或物理线索。最近,我们报道了聚(乙二醇)基水凝胶作为 3D 微环境的发展,支持 GBM 的增殖和侵袭。为了进一步模拟体内肿瘤-内皮细胞相互作用的微观解剖结构,我们开发了一种基于水凝胶的共培养模型,模拟肿瘤和内皮细胞的空间组织。为了提高生理相关性,使用患者来源的 GBM 细胞和小鼠脑内皮细胞作为模型细胞类型。使用可水解的藻酸盐纤维作为造孔剂,内皮细胞被部署并在 3D 水凝胶中形成类似于血管的结构,具有高细胞活力和保留内皮表型。共培养导致 GBM 细胞增殖显著增加,内皮细胞细胞黏附蛋白表达减少。总之,我们开发了一种新的 3D 共培养模型,模拟了脑肿瘤和内皮细胞在体内的空间组织。这种模型可能为未来的机制研究提供有价值的工具,以更生理相关的方式阐明肿瘤-内皮细胞相互作用对肿瘤进展的影响。

相似文献

引用本文的文献

本文引用的文献

3
Cancer stem cells in glioblastoma.胶质母细胞瘤中的癌症干细胞。
Genes Dev. 2015 Jun 15;29(12):1203-17. doi: 10.1101/gad.261982.115.
9
The blood-brain barrier: an engineering perspective.血脑屏障:工程学视角
Front Neuroeng. 2013 Aug 30;6:7. doi: 10.3389/fneng.2013.00007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验