Suppr超能文献

结合日长数据和基因组预测工具,预测复杂场景下与时间相关的性状。

Coupling day length data and genomic prediction tools for predicting time-related traits under complex scenarios.

机构信息

Department of Agronomy and Horticulture, University of NE-Lincoln, Lincoln, NE, 68583, USA.

Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan.

出版信息

Sci Rep. 2020 Aug 7;10(1):13382. doi: 10.1038/s41598-020-70267-9.

Abstract

Genomic selection (GS) has proven to be an efficient tool for predicting crop-rank performance of untested genotypes; however, when the traits have intermediate optima (phenology stages), this implementation might not be the most convenient. GS might deliver high-rank correlations but incurring in serious bias. Days to heading (DTH) is a crucial development stage in rice for regional adaptability with a significant impact on yield potential. The objective of this research consisted in develop a novel method that accurately predicts time-related traits such as DTH in unobserved environments. For this, we propose an implementation that incorporates day length information (DL) in the prediction process for two relevant scenarios: CV0, predicting tested genotypes in unobserved environments (C method); and CV00, predicting untested genotypes in unobserved environments (CB method). The use of DL has advantages over weather data since it can be determined in advance just by knowing the location and planting date. The proposed methods showed that DL information significantly helps to improve the predictive ability of DTH in unobserved environments. Under CV0, the C method returned a root-mean-square error (RMSE) of 3.9 days, a Pearson correlation (PC) of 0.98 and the differences between the predicted and observed environmental means (EMD) ranged between -4.95 and 4.67 days. For CV00, the CB method returned an RMSE of 7.3 days, a PC of 0.93 and the EMD ranged between -6.4 and 4.1 days while the conventional GS implementation produced an RMSE of 18.1 days, a PC of 0.41 and the EMD ranged between -31.5 and 28.7 days.

摘要

基因组选择 (GS) 已被证明是预测未经测试基因型作物等级表现的有效工具;然而,当性状具有中间最优值(物候阶段)时,这种实施方式可能不太方便。GS 可能会提供高等级相关性,但会产生严重的偏差。抽穗期 (DTH) 是水稻的一个关键发育阶段,对区域适应性有重大影响,对产量潜力有重大影响。本研究的目的是开发一种新方法,能够准确预测在未观测环境中与时间相关的性状,如 DTH。为此,我们提出了一种在两种相关情况下将日长信息 (DL) 纳入预测过程的实施方法:CV0,在未观测环境中预测测试基因型(C 方法);和 CV00,在未观测环境中预测未测试基因型(CB 方法)。与天气数据相比,使用 DL 具有优势,因为只需知道位置和种植日期,就可以提前确定。所提出的方法表明,DL 信息显著有助于提高未观测环境中 DTH 的预测能力。在 CV0 下,C 方法的均方根误差 (RMSE) 为 3.9 天,皮尔逊相关系数 (PC) 为 0.98,预测环境均值 (EMD) 与观测环境均值之间的差异在 -4.95 到 4.67 天之间。对于 CV00,CB 方法的 RMSE 为 7.3 天,PC 为 0.93,EMD 在 -6.4 到 4.1 天之间,而传统的 GS 实施方式的 RMSE 为 18.1 天,PC 为 0.41,EMD 在 -31.5 和 28.7 天之间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7332/7415153/00905fd34876/41598_2020_70267_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验