Suppr超能文献

基于多模态神经精神数据的抗精神病药初治精神分裂症患者短期和长期治疗反应的稳健可靠预测的机器学习框架。

A machine-learning framework for robust and reliable prediction of short- and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on multimodal neuropsychiatric data.

机构信息

Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark.

Cognitive Systems, DTU Compute, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark.

出版信息

Transl Psychiatry. 2020 Aug 10;10(1):276. doi: 10.1038/s41398-020-00962-8.

Abstract

The reproducibility of machine-learning analyses in computational psychiatry is a growing concern. In a multimodal neuropsychiatric dataset of antipsychotic-naïve, first-episode schizophrenia patients, we discuss a workflow aimed at reducing bias and overfitting by invoking simulated data in the design process and analysis in two independent machine-learning approaches, one based on a single algorithm and the other incorporating an ensemble of algorithms. We aimed to (1) classify patients from controls to establish the framework, (2) predict short- and long-term treatment response, and (3) validate the methodological framework. We included 138 antipsychotic-naïve, first-episode schizophrenia patients with data on psychopathology, cognition, electrophysiology, and structural magnetic resonance imaging (MRI). Perinatal data and long-term outcome measures were obtained from Danish registers. Short-term treatment response was defined as change in Positive And Negative Syndrome Score (PANSS) after the initial antipsychotic treatment period. Baseline diagnostic classification algorithms also included data from 151 matched controls. Both approaches significantly classified patients from healthy controls with a balanced accuracy of 63.8% and 64.2%, respectively. Post-hoc analyses showed that the classification primarily was driven by the cognitive data. Neither approach predicted short- nor long-term treatment response. Validation of the framework showed that choice of algorithm and parameter settings in the real data was successfully guided by results from the simulated data. In conclusion, this novel approach holds promise as an important step to minimize bias and obtain reliable results with modest sample sizes when independent replication samples are not available.

摘要

机器学习分析在计算精神病学中的可重复性是一个日益关注的问题。在一个针对抗精神病药初治、首发精神分裂症患者的多模态神经精神病学数据集,我们讨论了一种旨在通过在设计过程中调用模拟数据并在两种独立的机器学习方法中进行分析来减少偏差和过拟合的工作流程,一种方法基于单个算法,另一种方法则结合了算法集合。我们的目的是:(1)对患者与对照进行分类以建立框架,(2)预测短期和长期治疗反应,(3)验证方法框架。我们纳入了 138 名抗精神病药初治、首发精神分裂症患者,这些患者的数据包括精神病理学、认知、电生理学和结构磁共振成像(MRI)。围产期数据和长期结局指标来自丹麦登记处。短期治疗反应定义为初始抗精神病治疗期间阳性和阴性综合征量表(PANSS)的变化。基线诊断分类算法还包括 151 名匹配对照的资料。两种方法都显著地将患者与健康对照进行分类,其平衡准确率分别为 63.8%和 64.2%。事后分析表明,分类主要由认知数据驱动。两种方法都没有预测短期或长期治疗反应。框架的验证表明,在没有独立复制样本的情况下,模拟数据的结果成功地指导了真实数据中算法和参数设置的选择。总之,这种新方法有希望成为在没有独立复制样本的情况下,当样本量较小时,减少偏差并获得可靠结果的重要步骤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ef2/7417553/872c2ac59435/41398_2020_962_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验