Hoogeveen Renate M, Pereira João P Belo, Nurmohamed Nick S, Zampoleri Veronica, Bom Michiel J, Baragetti Andrea, Boekholdt S Matthijs, Knaapen Paul, Khaw Kay-Tee, Wareham Nicholas J, Groen Albert K, Catapano Alberico L, Koenig Wolfgang, Levin Evgeni, Stroes Erik S G
Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
Eur Heart J. 2020 Nov 1;41(41):3998-4007. doi: 10.1093/eurheartj/ehaa648.
In the era of personalized medicine, it is of utmost importance to be able to identify subjects at the highest cardiovascular (CV) risk. To date, single biomarkers have failed to markedly improve the estimation of CV risk. Using novel technology, simultaneous assessment of large numbers of biomarkers may hold promise to improve prediction. In the present study, we compared a protein-based risk model with a model using traditional risk factors in predicting CV events in the primary prevention setting of the European Prospective Investigation (EPIC)-Norfolk study, followed by validation in the Progressione della Lesione Intimale Carotidea (PLIC) cohort.
Using the proximity extension assay, 368 proteins were measured in a nested case-control sample of 822 individuals from the EPIC-Norfolk prospective cohort study and 702 individuals from the PLIC cohort. Using tree-based ensemble and boosting methods, we constructed a protein-based prediction model, an optimized clinical risk model, and a model combining both. In the derivation cohort (EPIC-Norfolk), we defined a panel of 50 proteins, which outperformed the clinical risk model in the prediction of myocardial infarction [area under the curve (AUC) 0.754 vs. 0.730; P < 0.001] during a median follow-up of 20 years. The clinically more relevant prediction of events occurring within 3 years showed an AUC of 0.732 using the clinical risk model and an AUC of 0.803 for the protein model (P < 0.001). The predictive value of the protein panel was confirmed to be superior to the clinical risk model in the validation cohort (AUC 0.705 vs. 0.609; P < 0.001).
In a primary prevention setting, a proteome-based model outperforms a model comprising clinical risk factors in predicting the risk of CV events. Validation in a large prospective primary prevention cohort is required to address the value for future clinical implementation in CV prevention.
在个性化医疗时代,能够识别心血管(CV)风险最高的个体至关重要。迄今为止,单一生物标志物未能显著改善CV风险评估。利用新技术,同时评估大量生物标志物可能有望改善预测。在本研究中,我们在欧洲前瞻性调查(EPIC)-诺福克研究的一级预防环境中,将基于蛋白质的风险模型与使用传统风险因素的模型进行比较,以预测CV事件,随后在颈动脉内膜病变进展(PLIC)队列中进行验证。
使用邻位延伸分析,在来自EPIC-诺福克前瞻性队列研究的822名个体和PLIC队列的702名个体的巢式病例对照样本中测量了368种蛋白质。使用基于树的集成和提升方法,我们构建了一个基于蛋白质的预测模型、一个优化的临床风险模型以及一个将两者结合的模型。在推导队列(EPIC-诺福克)中,我们定义了一组50种蛋白质,在中位随访20年期间,其在预测心肌梗死方面优于临床风险模型[曲线下面积(AUC)0.754对0.730;P<0.001]。对于3年内发生事件的临床相关性更强的预测,使用临床风险模型的AUC为0.732,蛋白质模型的AUC为0.803(P<0.001)。在验证队列中,蛋白质组的预测价值被证实优于临床风险模型(AUC 0.705对0.609;P<0.001)。
在一级预防环境中,基于蛋白质组的模型在预测CV事件风险方面优于包含临床风险因素的模型。需要在大型前瞻性一级预防队列中进行验证,以探讨其在未来CV预防临床应用中的价值。