Suppr超能文献

从工业信息集成角度预防新冠疫情:可持续防疫信息网络的评估与持续改进

Preventing COVID-19 from the perspective of industrial information integration: Evaluation and continuous improvement of information networks for sustainable epidemic prevention.

作者信息

Yin Shi, Zhang Nan, Dong Hengmin

机构信息

College of Economics and Management, Hebei Agricultural University, Baoding, 071000, China.

China Academy of Aerospace Systems Science and Engineering, Beijing, 100048, China.

出版信息

J Ind Inf Integr. 2020 Sep;19:100157. doi: 10.1016/j.jii.2020.100157. Epub 2020 Jun 20.

Abstract

COVID-19 is accelerating industrial information integration (III) for sustainable epidemic prevention and innovation design. It is important to emphasize that this interaction makes it reciprocal. To prevent COVID-19, the III of industrial sectors should be strengthened to encourage innovation for sustainable epidemic prevention. Accordingly, we studied the overall dynamic change trend of industrial sectors' information integration networks (IIN), the characteristics of individual IIN, and their influence on IIN performance. In the study, the gravity model and social network analysis were used to determine the variables of industrial sectors' information distance and quality, and to construct the IIN of industrial sectors. The results show that the overall relevance of the IIN of industrial sectors is low, and the network density fluctuates, with high network efficiency and poor stability. Two-way, strong correlation between industrial sectors is relatively low. The spillover effect of industrial sectors in the upstream of the industrial chain is poor, and it is difficult to have a strong information integration driving effect on the downstream industrial sectors. The interplate linkage of the IIN of industrial sectors is insufficient. Compared with point centrality and closeness, improvement of the betweenness centrality of industrial sectors can significantly improve IIN performance.

摘要

新冠疫情正在加速工业信息整合(III),以实现可持续的疫情防控和创新设计。需要强调的是,这种互动使其具有相互性。为防控新冠疫情,应加强工业部门的III,以鼓励可持续疫情防控的创新。因此,我们研究了工业部门信息整合网络(IIN)的整体动态变化趋势、单个IIN的特征及其对IIN绩效的影响。在研究中,采用引力模型和社会网络分析来确定工业部门信息距离和质量的变量,并构建工业部门的IIN。结果表明,工业部门IIN的整体相关性较低,网络密度波动,网络效率高但稳定性差。工业部门之间的双向强相关性相对较低。产业链上游工业部门的溢出效应较差,难以对下游工业部门产生强大的信息整合驱动效应。工业部门IIN的板块间联动不足。与点中心性和接近性相比,提高工业部门的中介中心性可显著提高IIN绩效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ff4/7313892/bafdb9249f3d/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验