Al-Shabib Nasser A, Husain Fohad Mabood, Qais Faizan Abul, Ahmad Naushad, Khan Altaf, Alyousef Abdullah A, Arshad Mohammed, Noor Saba, Khan Javed Masood, Alam Pravej, Albalawi Thamer H, Shahzad Syed Ali
Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia.
Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, India.
Front Microbiol. 2020 Jul 28;11:1680. doi: 10.3389/fmicb.2020.01680. eCollection 2020.
There is grave necessity to counter the menace of drug-resistant biofilms of pathogens using nanomaterials. Moreover, we need to produce nanoparticles (NPs) using inexpensive clean biological approaches that demonstrate broad-spectrum inhibition of microbial biofilms and cytotoxicity against HepG2 cell lines. In the current research work, titanium dioxide (TiO) NPs were fabricated through an environmentally friendly green process using the root extract of as the stabilizing and reducing agent to examine its antibiofilm and anticancer potential. Further, X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), transmission electron micrograph (TEM), energy-dispersive X-ray spectroscopy (EDS), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET) techniques were used for determining the crystallinity, functional groups involved, shape, size, thermal behavior, surface area, and porosity measurement, respectively, of the synthesized TiO NPs. Antimicrobial potential of the TiO NPs was determined by evaluating the minimum inhibitory concentration (MIC) against , , methicillin-resistant , , , and . Furthermore, at levels below the MIC (0.5 × MIC), TiO NPs demonstrated significant inhibition of biofilm formation (43-71%) and mature biofilms (24-64%) in all test pathogens. Cell death due to enhanced reactive oxygen species (ROS) production could be responsible for the impaired biofilm production in TiO NP-treated pathogens. The synthesized NPs induced considerable reduction in the viability of HepG2 and could prove effective in controlling liver cancer. In summary, the green synthesized TiO NPs demonstrate multifarious biological properties and could be used as an anti-infective agent to treat biofilm-based infections and cancer.
使用纳米材料对抗病原体耐药生物膜的威胁迫在眉睫。此外,我们需要采用廉价的清洁生物方法生产纳米颗粒(NPs),这些纳米颗粒要能对微生物生物膜具有广谱抑制作用,并对HepG2细胞系具有细胞毒性。在当前的研究工作中,通过环境友好的绿色工艺,使用[植物名称]的根提取物作为稳定剂和还原剂来制备二氧化钛(TiO)纳米颗粒,以研究其抗生物膜和抗癌潜力。此外,分别使用X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能量色散X射线光谱(EDS)、动态光散射(DLS)、热重分析(TGA)和布鲁诺尔-埃米特-泰勒(BET)技术来确定合成的TiO纳米颗粒的结晶度、所含官能团、形状、尺寸、热行为、表面积和孔隙率。通过评估对[具体细菌名称]、[具体细菌名称]、耐甲氧西林[具体细菌名称]、[具体细菌名称]、[具体细菌名称]和[具体细菌名称]的最低抑菌浓度(MIC)来确定TiO纳米颗粒的抗菌潜力。此外,在低于MIC(0.5×MIC)的水平下,TiO纳米颗粒在所有测试病原体中均表现出对生物膜形成(43 - 71%)和成熟生物膜(24 - 64%)的显著抑制作用。由于活性氧(ROS)产生增加导致的细胞死亡可能是TiO纳米颗粒处理的病原体中生物膜产生受损的原因。合成的纳米颗粒使HepG2细胞的活力显著降低,并可能在控制肝癌方面证明是有效的。总之,绿色合成的TiO纳米颗粒具有多种生物学特性,可作为抗感染剂用于治疗基于生物膜的感染和癌症。