Suppr超能文献

基于边缘检测的自适应光学分束探测图像中光感受器可见度的自动评估。

Automated Assessment of Photoreceptor Visibility in Adaptive Optics Split-Detection Images Using Edge Detection.

机构信息

Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.

Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Transl Vis Sci Technol. 2022 May 2;11(5):25. doi: 10.1167/tvst.11.5.25.

Abstract

PURPOSE

Adaptive optics scanning laser ophthalmoscopy (AOSLO) is a high-resolution imaging modality that allows measurements of cellular-level retinal changes in living patients. In retinal diseases, the visibility of photoreceptors in AOSLO images is affected by pathology, patient motion, and optics, which can lead to variability in analyses of the photoreceptor mosaic. Current best practice for AOSLO mosaic quantification requires manual assessment of photoreceptor visibility across overlapping images, a laborious and time-consuming task.

METHODS

We propose an automated measure for quantification of photoreceptor visibility in AOSLO. Our method detects salient edge features, which can represent visible photoreceptor boundaries in each image. We evaluate our measure against two human graders and two standard automated image quality assessment algorithms.

RESULTS

We evaluate the accuracy of pairwise ordering (PO) and the correlation of ordinal rankings (ORs) of photoreceptor visibility in 29 retinal regions, taken from five subjects with choroideremia. The proposed measure had high association with manual assessments (Grader 1: PO = 0.71, OR = 0.61; Grader 2: PO = 0.67, OR = 0.62), which is comparable with intergrader reliability (PO = 0.76, OR = 0.75) and outperforms the top standard approach (PO = 0.57; OR = 0.46).

CONCLUSIONS

Our edge-based measure can automatically assess photoreceptor visibility and order overlapping images within AOSLO montages. This can significantly reduce the manual labor required to generate high-quality AOSLO montages and enables higher throughput for quantitative studies of photoreceptors.

TRANSLATIONAL RELEVANCE

Automated assessment of photoreceptor visibility allows us to more rapidly quantify photoreceptor morphology in the living eye. This has applications to ophthalmic medicine by allowing detailed characterization of retinal degenerations, thus yielding potential biomarkers of treatment safety and efficacy.

摘要

目的

自适应光学扫描激光检眼镜(AOSLO)是一种高分辨率成像方式,可在活体患者中测量细胞水平的视网膜变化。在视网膜疾病中,AOSLO 图像中光感受器的可见度受病理学、患者运动和光学的影响,这可能导致光感受器镶嵌分析的变异性。目前,AOSLO 镶嵌定量的最佳实践需要手动评估重叠图像中光感受器的可见度,这是一项费力且耗时的任务。

方法

我们提出了一种用于量化 AOSLO 中光感受器可见度的自动测量方法。我们的方法检测突出的边缘特征,这些特征可以代表每个图像中可见的光感受器边界。我们将我们的方法与两名人类分级员和两种标准的自动图像质量评估算法进行了比较。

结果

我们评估了 29 个来自患有脉络膜视网膜变性的五名患者的视网膜区域的成对排序(PO)准确性和光感受器可见度的有序等级排名(OR)相关性。该方法与手动评估高度相关(分级员 1:PO=0.71,OR=0.61;分级员 2:PO=0.67,OR=0.62),与分级员间可靠性相当(PO=0.76,OR=0.75),并且优于顶级标准方法(PO=0.57;OR=0.46)。

结论

我们的基于边缘的方法可以自动评估 AOSLO 镶嵌中的光感受器可见度,并对重叠图像进行排序。这可以大大减少生成高质量 AOSLO 镶嵌所需的人工劳动,并为光感受器的定量研究提供更高的吞吐量。

翻译

自动评估光感受器的可见度使我们能够更快地量化活体眼中的光感受器形态。这在眼科医学中有应用,通过对视网膜变性进行详细描述,从而产生治疗安全性和疗效的潜在生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d19/9145033/28a6cf8b3725/tvst-11-5-25-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验