Suppr超能文献

用于测量和建模癌症表型异质性的系统生物学方法。

Systems biology approaches to measure and model phenotypic heterogeneity in cancer.

作者信息

Meyer Aaron S, Heiser Laura M

机构信息

Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA.

Department of Biomedical Engineering and OHSU Center for Spatial Systems Biomedicine, OHSU, Portland, OR, USA.

出版信息

Curr Opin Syst Biol. 2019 Oct;17:35-40. doi: 10.1016/j.coisb.2019.09.002. Epub 2019 Sep 11.

Abstract

The recent wide-spread adoption of single cell profiling technologies has revealed that individual cancers are not homogenous collections of deregulated cells, but instead are comprised of multiple genetically and phenotypically distinct cell subpopulations that exhibit a wide range of responses to extracellular signals and therapeutic insult. Such observations point to the urgent need to understand cancer as a complex, adaptive system. Cancer systems biology studies seek to develop the experimental and theoretical methods required to understand how biological components work together to determine how cancer cells function. Ultimately, such approaches will lead to improvements in how cancer is managed and treated. In this review, we discuss recent advances in cancer systems biology approaches to quantify, model, and elucidate mechanisms of heterogeneity.

摘要

近期单细胞分析技术的广泛应用表明,个体癌症并非是失调细胞的同质集合,而是由多个基因和表型上不同的细胞亚群组成,这些亚群对细胞外信号和治疗损伤表现出广泛的反应。这些观察结果表明迫切需要将癌症理解为一个复杂的自适应系统。癌症系统生物学研究旨在开发所需的实验和理论方法,以了解生物成分如何共同作用来决定癌细胞的功能。最终,这些方法将改善癌症的管理和治疗方式。在本综述中,我们讨论了癌症系统生物学方法在量化、建模和阐明异质性机制方面的最新进展。

相似文献

1
Systems biology approaches to measure and model phenotypic heterogeneity in cancer.
Curr Opin Syst Biol. 2019 Oct;17:35-40. doi: 10.1016/j.coisb.2019.09.002. Epub 2019 Sep 11.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
4
A lineage tree-based hidden Markov model quantifies cellular heterogeneity and plasticity.
Commun Biol. 2022 Nov 17;5(1):1258. doi: 10.1038/s42003-022-04208-9.
6
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
9
Systems biology of asthma and allergic diseases: a multiscale approach.
J Allergy Clin Immunol. 2015 Jan;135(1):31-42. doi: 10.1016/j.jaci.2014.10.015. Epub 2014 Nov 21.
10
Systems Biology Approaches Toward Understanding Primary Mitochondrial Diseases.
Front Genet. 2019 Feb 1;10:19. doi: 10.3389/fgene.2019.00019. eCollection 2019.

引用本文的文献

1
Sequential Chromogenic IHC: Spatial Analysis of Lymph Nodes Identifies Contact Interactions between Plasmacytoid Dendritic Cells and Plasmablasts.
Cancer Res Commun. 2023 Jul 13;3(7):1237-1247. doi: 10.1158/2767-9764.CRC-23-0102. eCollection 2023 Jul.
2
Analysis and modeling of cancer drug responses using cell cycle phase-specific rate effects.
Nat Commun. 2023 Jun 10;14(1):3450. doi: 10.1038/s41467-023-39122-z.
3
The Yin-Yang Dynamics in Cancer Pharmacogenomics and Personalized Medicine.
Methods Mol Biol. 2022;2547:141-163. doi: 10.1007/978-1-0716-2573-6_6.
4
A single-cell analysis of breast cancer cell lines to study tumour heterogeneity and drug response.
Nat Commun. 2022 Mar 31;13(1):1714. doi: 10.1038/s41467-022-29358-6.
6
Understanding breast cancer heterogeneity through non-genetic heterogeneity.
Breast Cancer. 2021 Jul;28(4):777-791. doi: 10.1007/s12282-021-01237-w. Epub 2021 Mar 15.
8
Biophysical Informatics Approach For Quantifying Phenotypic Heterogeneity In Cancer Cell Migration In Confined Microenvironments.
Bioinformatics. 2021 Aug 4;37(14):2042–2052. doi: 10.1093/bioinformatics/btab053. Epub 2021 Feb 1.
9
Cancer systems immunology.
Elife. 2020 Jul 13;9:e53839. doi: 10.7554/eLife.53839.
10
Measurement and models accounting for cell death capture hidden variation in compound response.
Cell Death Dis. 2020 Apr 20;11(4):255. doi: 10.1038/s41419-020-2462-8.

本文引用的文献

1
Efficient and flexible tagging of endogenous genes by homology-independent intron targeting.
Genome Res. 2019 Aug;29(8):1322-1328. doi: 10.1101/gr.246413.118. Epub 2019 Jun 25.
2
Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH.
Nature. 2019 Apr;568(7751):235-239. doi: 10.1038/s41586-019-1049-y. Epub 2019 Mar 25.
3
Modeling differentiation-state transitions linked to therapeutic escape in triple-negative breast cancer.
PLoS Comput Biol. 2019 Mar 11;15(3):e1006840. doi: 10.1371/journal.pcbi.1006840. eCollection 2019 Mar.
4
Multiscale Agent-Based and Hybrid Modeling of the Tumor Immune Microenvironment.
Processes (Basel). 2019 Jan;7(1). doi: 10.3390/pr7010037. Epub 2019 Jan 13.
5
Integrative single-cell analysis.
Nat Rev Genet. 2019 May;20(5):257-272. doi: 10.1038/s41576-019-0093-7.
6
Challenges in unsupervised clustering of single-cell RNA-seq data.
Nat Rev Genet. 2019 May;20(5):273-282. doi: 10.1038/s41576-018-0088-9.
7
Tumour heterogeneity and metastasis at single-cell resolution.
Nat Cell Biol. 2018 Dec;20(12):1349-1360. doi: 10.1038/s41556-018-0236-7. Epub 2018 Nov 26.
9
Experimental Considerations for Single-Cell RNA Sequencing Approaches.
Front Cell Dev Biol. 2018 Sep 4;6:108. doi: 10.3389/fcell.2018.00108. eCollection 2018.
10
Differentiation-state plasticity is a targetable resistance mechanism in basal-like breast cancer.
Nat Commun. 2018 Sep 19;9(1):3815. doi: 10.1038/s41467-018-05729-w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验