Al Hassan Ali, Lähnemann Jonas, Davtyan Arman, Al-Humaidi Mahmoud, Herranz Jesús, Bahrami Danial, Anjum Taseer, Bertram Florian, Dey Arka Bikash, Geelhaar Lutz, Pietsch Ullrich
Naturwissenschaftlich-Technische Fakultät der Universität Siegen, Siegen 57068, Germany.
Paul Drude Institut für Festkorperelektronik, Leibniz Institut im Forschungsverbund Berlin e.V., Hausvogteiplatz 5-7, Berlin 10117, Germany.
J Synchrotron Radiat. 2020 Sep 1;27(Pt 5):1200-1208. doi: 10.1107/S1600577520009789. Epub 2020 Aug 12.
Nanoprobe X-ray diffraction (nXRD) using focused synchrotron radiation is a powerful technique to study the structural properties of individual semiconductor nanowires. However, when performing the experiment under ambient conditions, the required high X-ray dose and prolonged exposure times can lead to radiation damage. To unveil the origin of radiation damage, a comparison is made of nXRD experiments carried out on individual semiconductor nanowires in their as-grown geometry both under ambient conditions and under He atmosphere at the microfocus station of the P08 beamline at the third-generation source PETRA III. Using an incident X-ray beam energy of 9 keV and photon flux of 10 s, the axial lattice parameter and tilt of individual GaAs/InGaAs/GaAs core-shell nanowires were monitored by continuously recording reciprocal-space maps of the 111 Bragg reflection at a fixed spatial position over several hours. In addition, the emission properties of the (In,Ga)As quantum well, the atomic composition of the exposed nanowires and the nanowire morphology were studied by cathodoluminescence spectroscopy, energy-dispersive X-ray spectroscopy and scanning electron microscopy, respectively, both prior to and after nXRD exposure. Nanowires exposed under ambient conditions show severe optical and morphological damage, which was reduced for nanowires exposed under He atmosphere. The observed damage can be largely attributed to an oxidation process from X-ray-induced ozone reactions in air. Due to the lower heat-transfer coefficient compared with GaAs, this oxide shell limits the heat transfer through the nanowire side facets, which is considered as the main channel of heat dissipation for nanowires in the as-grown geometry.
使用聚焦同步辐射的纳米探针X射线衍射(nXRD)是研究单个半导体纳米线结构特性的强大技术。然而,在环境条件下进行实验时,所需的高X射线剂量和延长的曝光时间会导致辐射损伤。为了揭示辐射损伤的起源,在第三代光源PETRA III的P08光束线的微聚焦站,对在环境条件下和He气氛中生长状态的单个半导体纳米线进行的nXRD实验进行了比较。使用9 keV的入射X射线束能量和10 s的光子通量,通过在几个小时内连续记录固定空间位置处111布拉格反射的倒易空间图,监测单个GaAs/InGaAs/GaAs核壳纳米线的轴向晶格参数和倾斜度。此外,分别在nXRD曝光之前和之后,通过阴极发光光谱、能量色散X射线光谱和扫描电子显微镜研究了(In,Ga)As量子阱的发射特性、暴露纳米线的原子组成和纳米线形态。在环境条件下暴露的纳米线显示出严重的光学和形态损伤,而在He气氛中暴露的纳米线损伤有所减轻。观察到的损伤很大程度上可归因于空气中X射线诱导的臭氧反应引起的氧化过程。由于与GaAs相比传热系数较低,这种氧化壳限制了通过纳米线侧面的热传递,而这被认为是生长状态下纳米线散热的主要通道。