Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Díaz de Leon, Paseos de la Montaña, 47460, Lagos de Moreno, Jalisco, Mexico.
Purdue Institute for Integrative Neuroscience, Purdue University, West-Lafayette, IN, USA.
Sci Rep. 2020 Sep 4;10(1):14668. doi: 10.1038/s41598-020-71373-4.
The interplay between structure and function is critical in the understanding of complex systems, their dynamics and their behavior. We investigated the interplay between structural and functional networks by means of the differential identifiability framework, which here quantifies the ability of identifying a particular network structure based on (1) the observation of its functional network and (2) the comparison with a prior observation under different initial conditions. We carried out an experiment consisting of the construction of [Formula: see text] different structural networks composed of [Formula: see text] nonlinear electronic circuits and studied the regions where network structures are identifiable. Specifically, we analyzed how differential identifiability is related to the coupling strength between dynamical units (modifying the level of synchronization) and what are the consequences of increasing the amount of noise existing in the functional networks. We observed that differential identifiability reaches its highest value for low to intermediate coupling strengths. Furthermore, it is possible to increase the identifiability parameter by including a principal component analysis in the comparison of functional networks, being especially beneficial for scenarios where noise reaches intermediate levels. Finally, we showed that the regime of the parameter space where differential identifiability is the highest is highly overlapped with the region where structural and functional networks correlate the most.
结构与功能的相互作用在理解复杂系统、它们的动力学和行为方面至关重要。我们通过差分可识别性框架研究了结构和功能网络之间的相互作用,该框架通过以下两种方法来量化基于(1)观察其功能网络和(2)与不同初始条件下的先前观察结果进行比较来识别特定网络结构的能力:(1) 观察其功能网络,(2) 与不同初始条件下的先前观察结果进行比较。我们进行了一项实验,包括构建由[Formula: see text]个不同的结构网络组成的[Formula: see text]个非线性电子电路,并研究了网络结构可识别的区域。具体来说,我们分析了差分可识别性如何与动态单元之间的耦合强度(修改同步水平)相关,以及在功能网络中增加噪声的数量会产生什么后果。我们观察到,差分可识别性在低到中等耦合强度下达到最高值。此外,通过在功能网络的比较中包含主成分分析,可以增加可识别性参数,对于噪声达到中等水平的情况尤其有益。最后,我们表明,差分可识别性最高的参数空间区域与结构和功能网络相关性最高的区域高度重叠。