Suppr超能文献

在无法获得个体层面数据时开发 COVID-19 死亡率风险预测模型。

Developing a COVID-19 mortality risk prediction model when individual-level data are not available.

机构信息

Clalit Research Institute, Innovation Division, Clalit Health Services, Toval 40, Ramat-Gan, Israel.

School of Public Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Ben-Gurion blvd. 1, Be'er Sheva, Israel.

出版信息

Nat Commun. 2020 Sep 7;11(1):4439. doi: 10.1038/s41467-020-18297-9.

Abstract

At the COVID-19 pandemic onset, when individual-level data of COVID-19 patients were not yet available, there was already a need for risk predictors to support prevention and treatment decisions. Here, we report a hybrid strategy to create such a predictor, combining the development of a baseline severe respiratory infection risk predictor and a post-processing method to calibrate the predictions to reported COVID-19 case-fatality rates. With the accumulation of a COVID-19 patient cohort, this predictor is validated to have good discrimination (area under the receiver-operating characteristics curve of 0.943) and calibration (markedly improved compared to that of the baseline predictor). At a 5% risk threshold, 15% of patients are marked as high-risk, achieving a sensitivity of 88%. We thus demonstrate that even at the onset of a pandemic, shrouded in epidemiologic fog of war, it is possible to provide a useful risk predictor, now widely used in a large healthcare organization.

摘要

在 COVID-19 大流行初期,当还没有 COVID-19 患者的个体数据时,就已经需要风险预测器来支持预防和治疗决策。在这里,我们报告了一种混合策略来创建这样的预测器,该策略结合了基线严重呼吸道感染风险预测器的开发和后处理方法,以将预测结果校准到报告的 COVID-19 病死率。随着 COVID-19 患者队列的积累,该预测器被验证具有良好的区分度(接收者操作特征曲线下面积为 0.943)和校准度(与基线预测器相比有显著提高)。在 5%的风险阈值下,15%的患者被标记为高风险,敏感性为 88%。因此,我们证明,即使在大流行初期,在充满流行病学战争迷雾的情况下,也有可能提供一个有用的风险预测器,该预测器现在已在一个大型医疗机构中广泛使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8900/7477233/9551bdd039c1/41467_2020_18297_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验