Suppr超能文献

一种用于评估青光眼视网膜神经纤维层厚度图空间模式的人工智能方法。

An Artificial Intelligence Approach to Assess Spatial Patterns of Retinal Nerve Fiber Layer Thickness Maps in Glaucoma.

作者信息

Wang Mengyu, Shen Lucy Q, Pasquale Louis R, Wang Hui, Li Dian, Choi Eun Young, Yousefi Siamak, Bex Peter J, Elze Tobias

机构信息

Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.

Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.

出版信息

Transl Vis Sci Technol. 2020 Aug 27;9(9):41. doi: 10.1167/tvst.9.9.41. eCollection 2020 Aug.

Abstract

PURPOSE

The purpose of this study was to classify the spatial patterns of retinal nerve fiber layer thickness (RNFLT) and assess their associations with visual field (VF) loss in glaucoma.

METHODS

We used paired reliable 24-2 VFs and optical coherence tomography scans of 691 eyes from 691 patients. The RNFLT maps were used to determine the RNFLT patterns (RPs) by non-negative matrix factorization (NMF). The RPs were correlated with mean deviation (MD), spherical equivalent (SE), and major blood vessel locations. The RPs were further used to predict the 52 total deviation (TD) values by linear regression compared with models using 24 15-degree sectors. Last, we associated the RPs with average TDs of the central upper two locations (C2-TD). Stepwise regression was applied to remove redundant features.

RESULTS

NMF highlighted 16 distinct RPs. Twelve RPs had arcuate-like informative zones (iZones): six with superior iZones, five with inferior iZones, and one RP with a bi-hemifield iZone, and four with non-arcuate-like temporal or nasal iZones. Twelve, nine, nine, and nine RPs were significantly ( < 0.05) correlated to MD, SE, and superior and inferior artery locations, respectively. Using RPs significantly ( < 0.05) improved the prediction of 52 TDs compared with using 24 15-degree sectors. Using RPs significantly ( < 0.001) improved the C2-TD prediction related to thinning in the inferior vulnerability zone compared with using the 24 sectoral RNFLTs.

CONCLUSIONS

Using RPs improved the VF prediction compared with using sectoral RNFLTs.

TRANSLATIONAL RELEVANCE

The RPs characterizing both pathological and anatomical variations can potentially assist clinicians better assess RNFLT loss.

摘要

目的

本研究旨在对视网膜神经纤维层厚度(RNFLT)的空间模式进行分类,并评估其与青光眼视野(VF)缺损的相关性。

方法

我们使用了来自691例患者的691只眼睛的配对可靠的24-2视野和光学相干断层扫描。通过非负矩阵分解(NMF)使用RNFLT图来确定RNFLT模式(RPs)。将这些RPs与平均偏差(MD)、等效球镜度(SE)和主要血管位置相关联。与使用24个15度扇形区域的模型相比,进一步使用RPs通过线性回归预测52个总偏差(TD)值。最后,我们将RPs与中央上方两个位置的平均TD(C2-TD)相关联。应用逐步回归以去除冗余特征。

结果

NMF突出显示了16种不同的RPs。12种RPs具有弓形样信息区域(iZones):6种具有上方iZones,5种具有下方iZones,1种RP具有双侧半视野iZone,4种具有非弓形样颞侧或鼻侧iZones。分别有12种、9种、9种和9种RPs与MD、SE以及上方和下方动脉位置显著相关(P<0.05)。与使用24个15度扇形区域相比,使用RPs显著改善了52个TD的预测(P<0.05)。与使用24个扇形区域的RNFLT相比,使用RPs显著改善了与下方易损区域变薄相关的C2-TD预测(P<0.001)。

结论

与使用扇形区域的RNFLT相比,使用RPs改善了视野预测。

转化相关性

表征病理和解剖变异的RPs可能有助于临床医生更好地评估RNFLT缺损。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验