Suppr超能文献

验证 Canproj 对加拿大癌症发病率数据的预测能力。

Validation of Canproj for projecting Canadian cancer incidence data.

机构信息

Public Health Agency of Canada, Ottawa, Ontario, Canada.

Clinical Workforce Planning, Health Professions Strategy and Practice (HPSP), Alberta Health Services, Edmonton, Alberta, Canada.

出版信息

Health Promot Chronic Dis Prev Can. 2020 Sep;40(9):267-280. doi: 10.24095/hpcdp.40.9.02.

Abstract

INTRODUCTION

Cancer projections can provide key information to help prioritize cancer control strategies, allocate resources and evaluate current treatments and interventions. Canproj is a cancer-projection tool that builds on the Nordpred R-package by adding a selection of projection models. The objective of this project was to validate the Canproj R-package for the short-term projection of cancer rates.

METHODS

We used national cancer incidence data from 1986 to 2014 from the National Cancer Incidence Reporting System and Canadian Cancer Registry. Cross-validation was used to estimate the accuracy of the projections generated by Canproj and relative bias (RB) was used as validation measure. The Canproj automatic model selection decision tree was also assessed.

RESULTS

Five of the six models had mean RB between 5% and 10% and median RB around 5%. For some of the cancer sites that were more difficult to project, a shorter time period improved reliability. The Nordpred model was selected 79% of the time by Canproj automatic model selection although it had the smallest RB only 24% of the time.

CONCLUSIONS

The Canproj package was able to provide projections that closely matched the real data for most cancer sites.

摘要

简介

癌症预测可以提供关键信息,有助于优先考虑癌症控制策略,分配资源,并评估当前的治疗和干预措施。Canproj 是一个癌症预测工具,它建立在 Nordpred R 包的基础上,增加了一系列预测模型。本项目的目的是验证 Canproj R 包在癌症发病率的短期预测中的有效性。

方法

我们使用了来自国家癌症发病率报告系统和加拿大癌症登记处的 1986 年至 2014 年的全国癌症发病率数据。交叉验证用于估计 Canproj 生成的预测的准确性,并使用相对偏差 (RB) 作为验证指标。还评估了 Canproj 自动模型选择决策树。

结果

六种模型中的五种模型的平均 RB 在 5%至 10%之间,中位数 RB 在 5%左右。对于一些更难预测的癌症部位,较短的时间段提高了可靠性。Nordpred 模型虽然只有 24%的时间具有最小的 RB,但 Canproj 自动模型选择 79%的时间选择了它。

结论

Canproj 包能够提供与大多数癌症部位的实际数据非常匹配的预测。

相似文献

本文引用的文献

4
Cancer incidence and mortality projections in the UK until 2035.英国到2035年的癌症发病率和死亡率预测。
Br J Cancer. 2016 Oct 25;115(9):1147-1155. doi: 10.1038/bjc.2016.304. Epub 2016 Oct 11.
5
Trends and predictions for gastric cancer mortality in Brazil.巴西胃癌死亡率的趋势与预测。
World J Gastroenterol. 2016 Jul 28;22(28):6527-38. doi: 10.3748/wjg.v22.i28.6527.
7
Cancer Incidence and Mortality Through 2020.截至2020年的癌症发病率和死亡率。
Prev Chronic Dis. 2016 Apr 7;13:E48. doi: 10.5888/pcd13.160024.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验