Suppr超能文献

静电纺丝微血管用于快速血管网络修复。

Electrospun Microvasculature for Rapid Vascular Network Restoration.

机构信息

Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.

出版信息

Tissue Eng Regen Med. 2021 Feb;18(1):89-97. doi: 10.1007/s13770-020-00292-2. Epub 2020 Sep 10.

Abstract

BACKGROUND

Sufficient blood supply through neo-vasculature is a major challenge in cell therapy and tissue engineering in order to support the growth, function, and viability of implanted cells. However, depending on the implant size and cell types, the natural process of angiogenesis may not provide enough blood supply for long term survival of the implants, requiring supplementary strategy to prevent local ischemia. Many researchers have reported the methodologies to form pre-vasculatures that mimic in vivo microvessels for implantation to promote angiogenesis. These approaches successfully showed significant enhancement in long-term survival and regenerative functions of implanted cells, yet there remains room for improvement.

METHODS

This paper suggests a proof-of-concept strategy to utilize novel scaffolds of dimpled/hollow electrospun fibers that enable the formation of highly mature pre-vasculatures with adequate dimensions and fast degrading in the tissue.

RESULT

Higher surface roughness improved the maturity of endothelial cells mediated by increased cell-scaffold affinity. The degradation of scaffold material for functional restoration of the neo-vasculatures was also expedited by employing the hollow scaffold design based on co-axial electrospinning techniques.

CONCLUSION

This unique scaffold-based pre-vasculature can hold implanted cells and tissue constructs for a prolonged time while minimizing the cellular loss, manifesting as a gold standard design for transplantable scaffolds.

摘要

背景

为了支持植入细胞的生长、功能和存活,新血管的充分血液供应是细胞治疗和组织工程中的一个主要挑战。然而,取决于植入物的大小和细胞类型,血管生成的自然过程可能无法为植入物的长期存活提供足够的血液供应,需要补充策略来防止局部缺血。许多研究人员已经报道了形成模拟体内微血管的预血管的方法,用于促进血管生成。这些方法成功地显著提高了植入细胞的长期存活率和再生功能,但仍有改进的空间。

方法

本文提出了一种利用新型凹坑/空心电纺纤维支架的概念验证策略,该支架能够形成具有足够尺寸和快速降解的高度成熟的预血管。

结果

更高的表面粗糙度通过增加细胞-支架亲和力来提高内皮细胞的成熟度。基于同轴电纺技术的空心支架设计也加快了支架材料的降解,以实现新血管的功能恢复。

结论

这种基于独特支架的预血管可以在延长时间内容纳植入的细胞和组织构建体,同时最大限度地减少细胞损失,表现为可移植支架的金标准设计。

相似文献

1
Electrospun Microvasculature for Rapid Vascular Network Restoration.
Tissue Eng Regen Med. 2021 Feb;18(1):89-97. doi: 10.1007/s13770-020-00292-2. Epub 2020 Sep 10.
2
Novel method to improve vascularization of tissue engineered constructs with biodegradable fibers.
Biofabrication. 2016 Jan 7;8(1):015004. doi: 10.1088/1758-5090/8/1/015004.
3
Vascularization of Natural and Synthetic Bone Scaffolds.
Cell Transplant. 2018 Aug;27(8):1269-1280. doi: 10.1177/0963689718782452. Epub 2018 Jul 16.
4
A review of evolution of electrospun tissue engineering scaffold: From two dimensions to three dimensions.
Proc Inst Mech Eng H. 2017 Jul;231(7):597-616. doi: 10.1177/0954411917699021. Epub 2017 Mar 28.
8
Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification.
Mater Sci Eng C Mater Biol Appl. 2013 Oct;33(7):3644-51. doi: 10.1016/j.msec.2013.04.048. Epub 2013 May 3.
9
Tailoring surface nanoroughness of electrospun scaffolds for skeletal tissue engineering.
Acta Biomater. 2017 Sep 1;59:82-93. doi: 10.1016/j.actbio.2017.07.003. Epub 2017 Jul 6.

引用本文的文献

3
Mechanical strategies to promote vascularization for tissue engineering and regenerative medicine.
Burns Trauma. 2024 Sep 30;12:tkae039. doi: 10.1093/burnst/tkae039. eCollection 2024.
4
Solution-Based Processing for Scaffold Fabrication in Tissue Engineering Applications: A Brief Review.
Polymers (Basel). 2021 Jun 22;13(13):2041. doi: 10.3390/polym13132041.

本文引用的文献

2
Electrospun Fibrous Scaffolds for Small-Diameter Blood Vessels: A Review.
Membranes (Basel). 2018 Mar 6;8(1):15. doi: 10.3390/membranes8010015.
3
Vascular Tissue Engineering: Progress, Challenges, and Clinical Promise.
Cell Stem Cell. 2018 Mar 1;22(3):340-354. doi: 10.1016/j.stem.2018.02.009.
4
Elderly Patient-Derived Endothelial Cells for Vascularization of Engineered Muscle.
Mol Ther. 2017 Apr 5;25(4):935-948. doi: 10.1016/j.ymthe.2017.02.011. Epub 2017 Mar 6.
6
3D-printed fluidic networks as vasculature for engineered tissue.
Lab Chip. 2016 May 24;16(11):2025-43. doi: 10.1039/c6lc00193a.
7
Development of 3D Microvascular Networks Within Gelatin Hydrogels Using Thermoresponsive Sacrificial Microfibers.
Adv Healthc Mater. 2016 Apr 6;5(7):781-5. doi: 10.1002/adhm.201500792. Epub 2016 Feb 4.
8
Scaffolds in vascular regeneration: current status.
Vasc Health Risk Manag. 2015 Jan 19;11:79-91. doi: 10.2147/VHRM.S50536. eCollection 2015.
9
Tissue vascularization through 3D printing: Will technology bring us flow?
Dev Dyn. 2015 May;244(5):629-40. doi: 10.1002/dvdy.24254. Epub 2015 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验