Suppr超能文献

高度近视的吲哚青绿血管造影(ICGA)和微视野检查(MCSL)眼底图像的多模态仿射配准

Multimodal affine registration for ICGA and MCSL fundus images of high myopia.

作者信息

Luo Gaohui, Chen Xinjian, Shi Fei, Peng Yunzhen, Xiang Dehui, Chen Qiuying, Xu Xun, Zhu Weifang, Fan Ying

机构信息

School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China.

contributed equally.

出版信息

Biomed Opt Express. 2020 Jul 20;11(8):4443-4457. doi: 10.1364/BOE.393178. eCollection 2020 Aug 1.

Abstract

The registration between indocyanine green angiography (ICGA) and multi-color scanning laser (MCSL) imaging fundus images is vital for the joint linear lesion segmentation in ICGA and MCSL and the evaluation whether MCSL can replace ICGA as a non-invasive diagnosis for linear lesion. To our best knowledge, there are no studies focusing on the image registration between these two modalities. In this paper, we propose a framework based on convolutional neural networks for the multimodal affine registration between ICGA and MCSL images, which contains two parts: coarse registration stage and fine registration stage. In the coarse registration stage, the optic disc is segmented and its centroid is used as a matching point to perform coarse registration. The fine registration stage regresses affine parameters directly using jointly supervised and weakly-supervised loss function. Experimental results show the effectiveness of the proposed method, which lays a sound foundation for further evaluation of non-invasive diagnosis of linear lesion based on MCSL.

摘要

吲哚菁绿血管造影(ICGA)与多色扫描激光(MCSL)眼底图像之间的配准对于ICGA和MCSL中联合线性病变分割以及评估MCSL是否可作为线性病变的非侵入性诊断替代ICGA至关重要。据我们所知,尚无研究关注这两种模态之间的图像配准。在本文中,我们提出了一种基于卷积神经网络的框架,用于ICGA和MCSL图像之间的多模态仿射配准,该框架包含两个部分:粗配准阶段和精配准阶段。在粗配准阶段,分割视盘并将其质心用作匹配点进行粗配准。精配准阶段使用联合监督和弱监督损失函数直接回归仿射参数。实验结果表明了所提方法的有效性,为基于MCSL的线性病变非侵入性诊断的进一步评估奠定了良好基础。

相似文献

引用本文的文献

本文引用的文献

1
Networks for Joint Affine and Non-parametric Image Registration.联合仿射和非参数图像配准网络
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019 Jun;2019:4219-4228. doi: 10.1109/cvpr.2019.00435. Epub 2020 Jan 9.
3
Hi-Net: Hybrid-Fusion Network for Multi-Modal MR Image Synthesis.Hi-Net:用于多模态磁共振图像合成的混合融合网络。
IEEE Trans Med Imaging. 2020 Sep;39(9):2772-2781. doi: 10.1109/TMI.2020.2975344. Epub 2020 Feb 20.
6
Adversarial learning for mono- or multi-modal registration.对抗学习的单模态或多模态配准。
Med Image Anal. 2019 Dec;58:101545. doi: 10.1016/j.media.2019.101545. Epub 2019 Aug 24.
10
Learning a Probabilistic Model for Diffeomorphic Registration.学习用于可变形配准的概率模型。
IEEE Trans Med Imaging. 2019 Sep;38(9):2165-2176. doi: 10.1109/TMI.2019.2897112. Epub 2019 Feb 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验