Suppr超能文献

基于强度的组织病理学组织切片明场图像与二次谐波产生图像配准

Intensity-based registration of bright-field and second-harmonic generation images of histopathology tissue sections.

作者信息

Keikhosravi Adib, Li Bin, Liu Yuming, Eliceiri Kevin W

机构信息

Laboratory for Optical and Computational Instrumentation, Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.

Authors contributed equally.

出版信息

Biomed Opt Express. 2019 Dec 9;11(1):160-173. doi: 10.1364/BOE.11.000160. eCollection 2020 Jan 1.

Abstract

The use of second-harmonic generation (SHG) microscopy in biomedical research is rapidly increasing. This is due in large part to the wide spread interest of using this imaging technique to examine the role of fibrillar collagen organization in diseases such as cancer. The co-examination of SHG images and traditional bright-field (BF) images of hematoxylin and eosin (H&E) stained tissue as a gold standard clinical validation is usually required. However, image registration of these two modalities has been mostly done by manually selecting corresponding landmarks which is labor intensive and error prone. We designed, implemented, and validated the first image intensity-based registration method capable of automatically aligning SHG images and BF images. In our algorithmic approach, a feature extractor is used to pre-process the BF image to block the content features not visible in SHG images and the output image is then aligned with the SHG image by maximizing the common image features. An alignment matrix maximizing the image mutual information is found by evolutionary optimization and the optimization is facilitated using a hierarchical multiresolution framework. The automatic registration results were compared to traditional manual registration to assess the performance of the algorithm. The proposed algorithm has been successfully used in several biomedical studies such as pancreatic and kidney cancer studies and shown great efficacy.

摘要

二次谐波产生(SHG)显微镜在生物医学研究中的应用正在迅速增加。这在很大程度上归因于广泛使用这种成像技术来研究纤维状胶原蛋白组织在诸如癌症等疾病中的作用。通常需要将SHG图像与苏木精和伊红(H&E)染色组织的传统明场(BF)图像进行联合检查,作为金标准临床验证。然而,这两种模态的图像配准大多是通过手动选择相应的地标来完成的,这既费力又容易出错。我们设计、实现并验证了第一种基于图像强度的配准方法,该方法能够自动对齐SHG图像和BF图像。在我们的算法方法中,使用特征提取器对BF图像进行预处理,以屏蔽SHG图像中不可见的内容特征,然后通过最大化共同图像特征将输出图像与SHG图像对齐。通过进化优化找到最大化图像互信息的对齐矩阵,并使用分层多分辨率框架促进优化。将自动配准结果与传统手动配准进行比较,以评估算法的性能。所提出的算法已成功应用于多项生物医学研究,如胰腺癌和肾癌研究,并显示出巨大的功效。

相似文献

7
Methods for Quantifying Fibrillar Collagen Alignment.定量纤维状胶原蛋白排列的方法。
Methods Mol Biol. 2017;1627:429-451. doi: 10.1007/978-1-4939-7113-8_28.

引用本文的文献

2
Evolutionary Image Registration: A Review.进化图像配准:综述。
Sensors (Basel). 2023 Jan 14;23(2):967. doi: 10.3390/s23020967.
6
Collagen Organization in Relation to Ductal Carcinoma Pathology and Outcomes.胶原组织与导管癌病理和预后的关系。
Cancer Epidemiol Biomarkers Prev. 2021 Jan;30(1):80-88. doi: 10.1158/1055-9965.EPI-20-0889. Epub 2020 Oct 20.

本文引用的文献

4
A review of artifacts in histopathology.组织病理学中的伪像综述。
J Oral Maxillofac Pathol. 2018 May-Aug;22(2):279. doi: 10.4103/jomfp.JOMFP_125_15.
7
Methods for Quantifying Fibrillar Collagen Alignment.定量纤维状胶原蛋白排列的方法。
Methods Mol Biol. 2017;1627:429-451. doi: 10.1007/978-1-4939-7113-8_28.
10
Artefacts in histopathology.组织病理学中的人为假象。
J Oral Maxillofac Pathol. 2014 Sep;18(Suppl 1):S111-6. doi: 10.4103/0973-029X.141346.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验