Suppr超能文献

大肠杆菌中的一种氨酰-tRNA合成酶复合物。

An aminoacyl-tRNA synthetase complex in Escherichia coli.

作者信息

Harris C L

出版信息

J Bacteriol. 1987 Jun;169(6):2718-23. doi: 10.1128/jb.169.6.2718-2723.1987.

Abstract

Aminoacyl-tRNA synthetases from several strains of Escherichia coli are shown to elute as a high-molecular-weight complex on 6% agarose columns (Bio-Gel A-5M). In contrast, very little synthetase activity was observed in such complexes on Sephadex G-200 columns, suggesting that these enzymes may interact with or are dissociated during chromatography on dextran. The size of the complex observed on Bio-Gel A-5M was influenced by the method of cell breakage and the salt concentrations present in buffers. The largest complexes (greater than 1,000,000 daltons) were seen with cells broken with a freeze press, whereas with sonicated preparations the average size of the complex was about 400,000 daltons. Extraction of synthetases at 0.15 M NaCl, to mimic physiological salt concentrations, also resulted in high-molecular-weight complexes, as demonstrated by both agarose gel filtration and ultracentrifugation analysis. Evidence is presented that dissociation of some synthetases does occur in the presence of higher salt levels (0.4 M NaCl). Partial purification of the synthetase complex on DEAE-Sephacel was accomplished with only minor dissociation of individual synthetases. These data suggest that a complex(es) of aminoacyl-tRNA synthetase does exist in bacterial cells, just as in eucaryotes, and that the complex may have escaped earlier detection due to its fragility during isolation.

摘要

来自几种大肠杆菌菌株的氨酰 - tRNA合成酶在6%琼脂糖柱(Bio - Gel A - 5M)上洗脱时呈现为高分子量复合物。相比之下,在葡聚糖凝胶G - 200柱上的此类复合物中观察到的合成酶活性非常低,这表明这些酶在葡聚糖柱层析过程中可能会相互作用或解离。在Bio - Gel A - 5M上观察到的复合物大小受细胞破碎方法和缓冲液中盐浓度的影响。用冷冻压榨法破碎细胞时可观察到最大的复合物(大于1000000道尔顿),而超声破碎的制剂中复合物的平均大小约为400000道尔顿。在0.15M NaCl下提取合成酶以模拟生理盐浓度,琼脂糖凝胶过滤和超速离心分析均表明也会产生高分子量复合物。有证据表明在较高盐浓度(0.4M NaCl)下确实会发生一些合成酶的解离。在DEAE - Sephacel上对合成酶复合物进行部分纯化时,单个合成酶仅有轻微解离。这些数据表明细菌细胞中确实存在氨酰 - tRNA合成酶复合物,就像在真核生物中一样,并且由于其在分离过程中的脆弱性,该复合物可能较早之前未被检测到。

相似文献

1
An aminoacyl-tRNA synthetase complex in Escherichia coli.
J Bacteriol. 1987 Jun;169(6):2718-23. doi: 10.1128/jb.169.6.2718-2723.1987.
2
High-molecular-weight forms of aminoacyl-tRNA synthetases and tRNA modification enzymes in Escherichia coli.
J Bacteriol. 1990 Apr;172(4):1798-803. doi: 10.1128/jb.172.4.1798-1803.1990.
4
Processing of tRNA is accomplished by a high-molecular-weight enzyme complex.
Recent Results Cancer Res. 1983;84:237-54. doi: 10.1007/978-3-642-81947-6_18.
5
Interactions of aminoacyl-tRNA synthetases in high-molecular-weight multienzyme complexes from rat liver.
Biochim Biophys Acta. 1985 Jul 1;829(3):319-26. doi: 10.1016/0167-4838(85)90239-0.
6
Aminoacyl-tRNA synthetase complex in Saccharomyces cerevisiae.
Biochem J. 1995 Jul 1;309 ( Pt 1)(Pt 1):321-4. doi: 10.1042/bj3090321.
9
Gram-scale purification of methionyl-tRNA and tyrosyl-tRNA synthetases from Escherichia coli.
Eur J Biochem. 1975 Nov 15;59(2):327-33. doi: 10.1111/j.1432-1033.1975.tb02459.x.
10
Multienzyme complexes of eukaryotic aminoacyl-tRNA synthetases.
Biosci Rep. 1983 Jun;3(6):527-38. doi: 10.1007/BF01120696.

引用本文的文献

1
The mARS complex: a critical mediator of immune regulation and homeostasis.
Front Immunol. 2024 Jun 21;15:1423510. doi: 10.3389/fimmu.2024.1423510. eCollection 2024.
2
A proteome-wide map of chaperone-assisted protein refolding in a cytosol-like milieu.
Proc Natl Acad Sci U S A. 2022 Nov 29;119(48):e2210536119. doi: 10.1073/pnas.2210536119. Epub 2022 Nov 23.
3
Nonrefoldability is Pervasive Across the Proteome.
J Am Chem Soc. 2021 Aug 4;143(30):11435-11448. doi: 10.1021/jacs.1c03270. Epub 2021 Jul 26.
4
Aminoacyl-tRNA synthetase complexes in evolution.
Int J Mol Sci. 2015 Mar 23;16(3):6571-94. doi: 10.3390/ijms16036571.
5
Archaeal aminoacyl-tRNA synthetases interact with the ribosome to recycle tRNAs.
Nucleic Acids Res. 2014 Apr;42(8):5191-201. doi: 10.1093/nar/gku164. Epub 2014 Feb 24.
6
Making proteins green; biosynthesis of chlorophyll-binding proteins in cyanobacteria.
Photosynth Res. 2014 Feb;119(1-2):223-32. doi: 10.1007/s11120-013-9797-2. Epub 2013 Feb 4.
7
Aminoacyl-tRNA synthetase complexes: molecular multitasking revealed.
FEMS Microbiol Rev. 2008 Jul;32(4):705-21. doi: 10.1111/j.1574-6976.2008.00119.x. Epub 2008 Jun 3.
8
An aminoacyl-tRNA synthetase:elongation factor complex for substrate channeling in archaeal translation.
Nucleic Acids Res. 2007;35(18):6094-102. doi: 10.1093/nar/gkm534. Epub 2007 Sep 1.
9
Aminoacyl-tRNA synthetase complex in Saccharomyces cerevisiae.
Biochem J. 1995 Jul 1;309 ( Pt 1)(Pt 1):321-4. doi: 10.1042/bj3090321.
10
Mechanism of mupirocin transport into sensitive and resistant bacteria.
Antimicrob Agents Chemother. 1989 Feb;33(2):156-63. doi: 10.1128/AAC.33.2.156.

本文引用的文献

1
Growth Requirements of Virus-Resistant Mutants of Escherichia Coli Strain "B".
Proc Natl Acad Sci U S A. 1946 May;32(5):120-8. doi: 10.1073/pnas.32.5.120.
2
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
3
New press for disruption of microorganisms.
J Bacteriol. 1962 Jun;83(6):1359-60. doi: 10.1128/jb.83.6.1359-1360.1962.
4
High molecular mass amino acyl-tRNA synthetase complexes in eukaryotes.
FEBS Lett. 1982 Jun 1;142(1):1-6. doi: 10.1016/0014-5793(82)80206-8.
5
7
Complex of aminoacyl-transfer RNA synthetases.
J Mol Biol. 1971 Aug 28;60(1):113-22. doi: 10.1016/0022-2836(71)90451-7.
8
Sulfur-deficient transfer ribonucleic acid in a cysteine-requiring, "relaxed" mutant of Escherichia coli.
J Bacteriol. 1969 Dec;100(3):1322-7. doi: 10.1128/jb.100.3.1322-1327.1969.
10
Subcellular distribution of aminoacyl-transfer RNA synthetases in Chinese hamster ovary cell culture.
J Mol Biol. 1973 Sep 15;79(2):285-93. doi: 10.1016/0022-2836(73)90006-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验