Suppr超能文献

寻找癌症干细胞的主导亚克隆作为多发性骨髓瘤潜在的新治疗靶点:人工智能视角

Hunting down the dominating subclone of cancer stem cells as a potential new therapeutic target in multiple myeloma: An artificial intelligence perspective.

作者信息

Lee Lisa X, Li Shengwen Calvin

机构信息

Division of Hematology/Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, UCI Health, Orange, CA 92868, United States.

Neuro-oncology and Stem Cell Research Laboratory, CHOC Children's Research Institute, Children's Hospital of Orange County, Orange, CA 92868, United States.

出版信息

World J Stem Cells. 2020 Aug 26;12(8):706-720. doi: 10.4252/wjsc.v12.i8.706.

Abstract

The development of single-cell subclones, which can rapidly switch from dormant to dominant subclones, occur in the natural pathophysiology of multiple myeloma (MM) but is often "pressed" by the standard treatment of MM. These emerging subclones present a challenge, providing reservoirs for chemoresistant mutations. Technological advancement is required to track MM subclonal changes, as understanding MM's mechanism of evolution at the cellular level can prompt the development of new targeted ways of treating this disease. Current methods to study the evolution of subclones in MM rely on technologies capable of phenotypically and genotypically characterizing plasma cells, which include immunohistochemistry, flow cytometry, or cytogenetics. Still, all of these technologies may be limited by the sensitivity for picking up rare events. In contrast, more incisive methods such as RNA sequencing, comparative genomic hybridization, or whole-genome sequencing are not yet commonly used in clinical practice. Here we introduce the epidemiological diagnosis and prognosis of MM and review current methods for evaluating MM subclone evolution, such as minimal residual disease/multiparametric flow cytometry/next-generation sequencing, and their respective advantages and disadvantages. In addition, we propose our new single-cell method of evaluation to understand MM's mechanism of evolution at the molecular and cellular level and to prompt the development of new targeted ways of treating this disease, which has a broad prospect.

摘要

单细胞亚克隆的发展可在多发性骨髓瘤(MM)的自然病理生理学中迅速从休眠亚克隆转变为优势亚克隆,但在MM的标准治疗中常受到“抑制”。这些新出现的亚克隆带来了挑战,为化疗耐药突变提供了储存库。需要技术进步来追踪MM亚克隆的变化,因为了解MM在细胞水平的进化机制可以推动治疗这种疾病的新靶向方法的开发。目前研究MM中亚克隆进化的方法依赖于能够对浆细胞进行表型和基因分型的技术,包括免疫组织化学、流式细胞术或细胞遗传学。然而,所有这些技术可能都受到检测罕见事件敏感性的限制。相比之下,RNA测序、比较基因组杂交或全基因组测序等更精确的方法在临床实践中尚未普遍使用。在这里,我们介绍了MM的流行病学诊断和预后,并综述了当前评估MM亚克隆进化的方法,如微小残留病/多参数流式细胞术/下一代测序,以及它们各自的优缺点。此外,我们提出了新的单细胞评估方法,以了解MM在分子和细胞水平的进化机制,并推动治疗这种疾病的新靶向方法的开发,该方法具有广阔的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d24e/7477658/25fcacd54e00/WJSC-12-706-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验