Suppr超能文献

犬乳腺肿瘤危险因素与生物学行为的统计分析:一项多中心研究

A Statistical Analysis of Risk Factors and Biological Behavior in Canine Mammary Tumors: A Multicenter Study.

作者信息

Burrai Giovanni P, Gabrieli Andrea, Moccia Valentina, Zappulli Valentina, Porcellato Ilaria, Brachelente Chiara, Pirino Salvatore, Polinas Marta, Antuofermo Elisabetta

机构信息

Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy.

Mediterranean Center for Disease Control, University of Sassari, Via Vienna 2, 07100 Sassari, Italy.

出版信息

Animals (Basel). 2020 Sep 18;10(9):1687. doi: 10.3390/ani10091687.

Abstract

Canine mammary tumors (CMTs) represent a serious issue in worldwide veterinary practice and several risk factors are variably implicated in the biology of CMTs. The present study examines the relationship between risk factors and histological diagnosis of a large CMT dataset from three academic institutions by classical statistical analysis and supervised machine learning methods. Epidemiological, clinical, and histopathological data of 1866 CMTs were included. Dogs with malignant tumors were significantly older than dogs with benign tumors (9.6 versus 8.7 years, < 0.001). Malignant tumors were significantly larger than benign counterparts (2.69 versus 1.7 cm, < 0.001). Interestingly, 18% of malignant tumors were smaller than 1 cm in diameter, providing compelling evidence that the size of the tumor should be reconsidered during the assessment of the TNM-WHO clinical staging. The application of the logistic regression and the machine learning model identified the age and the tumor's size as the best predictors with an overall diagnostic accuracy of 0.63, suggesting that these risk factors are sufficient but not exhaustive indicators of the malignancy of CMTs. This multicenter study increases the general knowledge of the main epidemiologica-clinical risk factors involved in the onset of CMTs and paves the way for further investigations of these factors in association with CMTs and in the application of machine learning technology.

摘要

犬乳腺肿瘤(CMTs)是全球兽医实践中的一个严重问题,多种风险因素在CMTs的生物学过程中有着不同程度的关联。本研究通过经典统计分析和监督机器学习方法,考察了来自三个学术机构的大型CMT数据集的风险因素与组织学诊断之间的关系。研究纳入了1866例CMTs的流行病学、临床和组织病理学数据。患有恶性肿瘤的犬明显比患有良性肿瘤的犬年龄大(9.6岁对8.7岁,<0.001)。恶性肿瘤明显比良性肿瘤大(2.69厘米对1.7厘米,<0.001)。有趣的是,18%的恶性肿瘤直径小于1厘米,这为在评估TNM-WHO临床分期时应重新考虑肿瘤大小提供了有力证据。逻辑回归和机器学习模型的应用确定年龄和肿瘤大小是最佳预测指标,总体诊断准确率为0.63,这表明这些风险因素是CMTs恶性程度的充分但非详尽指标。这项多中心研究增加了对CMTs发病相关主要流行病学-临床风险因素的总体认识,并为进一步研究这些因素与CMTs的关联以及机器学习技术的应用铺平了道路。

相似文献

引用本文的文献

本文引用的文献

5
Canine mammary tumors as a model for human disease.犬乳腺肿瘤作为人类疾病的模型。
Oncol Lett. 2018 Jun;15(6):8195-8205. doi: 10.3892/ol.2018.8411. Epub 2018 Apr 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验