Suppr超能文献

全球 COVID-19 大流行要求采取联合干预措施,以抑制未来的浪潮。

Global COVID-19 pandemic demands joint interventions for the suppression of future waves.

机构信息

Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, 100084 Beijing, China.

Tsinghua Urban Institute, Tsinghua University, 100084 Beijing, China.

出版信息

Proc Natl Acad Sci U S A. 2020 Oct 20;117(42):26151-26157. doi: 10.1073/pnas.2012002117. Epub 2020 Sep 28.

Abstract

Emerging evidence suggests a resurgence of COVID-19 in the coming years. It is thus critical to optimize emergency response planning from a broad, integrated perspective. We developed a mathematical model incorporating climate-driven variation in community transmissions and movement-modulated spatial diffusions of COVID-19 into various intervention scenarios. We find that an intensive 8-wk intervention targeting the reduction of local transmissibility and international travel is efficient and effective. Practically, we suggest a tiered implementation of this strategy where interventions are first implemented at locations in what we call the Global Intervention Hub, followed by timely interventions in secondary high-risk locations. We argue that thinking globally, categorizing locations in a hub-and-spoke intervention network, and acting locally, applying interventions at high-risk areas, is a functional strategy to avert the tremendous burden that would otherwise be placed on public health and society.

摘要

新出现的证据表明,未来几年 COVID-19 将再次出现。因此,从广泛的综合角度优化应急响应规划至关重要。我们开发了一个数学模型,将社区传播的气候驱动变化和 COVID-19 的运动调节空间扩散纳入各种干预方案。我们发现,针对降低本地传染性和国际旅行的密集 8 周干预措施是有效和有效的。实际上,我们建议分阶段实施这一战略,首先在我们称之为全球干预中心的地点实施干预措施,然后及时在次要高风险地点实施干预措施。我们认为,从全球角度思考,将地点归类为干预网络的中心辐射式结构,并从本地角度采取行动,在高风险地区实施干预措施,是避免公共卫生和社会面临巨大负担的有效策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c2e/7585010/7eb63a1b0611/pnas.2012002117fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验