Department of Psychology, University of Warwick, Coventry, UK.
Department of Psychology, Uppsala University, Uppsala, Sweden.
Psychon Bull Rev. 2021 Apr;28(2):351-373. doi: 10.3758/s13423-020-01805-9. Epub 2020 Sep 28.
In 1956, Brunswik proposed a definition of what he called intuitive and analytic cognitive processes, not in terms of verbally specified properties, but operationally based on the observable error distributions. In the decades since, the diagnostic value of error distributions has generally been overlooked, arguably because of a long tradition to consider the error as exogenous (and irrelevant) to the process. Based on Brunswik's ideas, we develop the precise/not precise (PNP) model, using a mixture distribution to model the proportion of error-perturbed versus error-free executions of an algorithm, to determine if Brunswik's claims can be replicated and extended. In Experiment 1, we demonstrate that the PNP model recovers Brunswik's distinction between perceptual and conceptual tasks. In Experiment 2, we show that also in symbolic tasks that involve no perceptual noise, the PNP model identifies both types of processes based on the error distributions. In Experiment 3, we apply the PNP model to confirm the often-assumed "quasi-rational" nature of the rule-based processes involved in multiple-cue judgment. The results demonstrate that the PNP model reliably identifies the two cognitive processes proposed by Brunswik, and often recovers the parameters of the process more effectively than a standard regression model with homogeneous Gaussian error, suggesting that the standard Gaussian assumption incorrectly specifies the error distribution in many tasks. We discuss the untapped potentials of using error distributions to identify cognitive processes and how the PNP model relates to, and can enlighten, debates on intuition and analysis in dual-systems theories.
1956 年,Brunswik 提出了一个他所谓的直觉和分析认知过程的定义,不是根据口头指定的属性,而是根据可观察的误差分布进行操作。在那之后的几十年里,误差分布的诊断价值通常被忽视了,可以说,这是因为长期以来一直认为误差是外生的(与过程无关)。基于 Brunswik 的思想,我们使用混合分布来对算法的误差干扰和无误差执行的比例进行建模,从而开发出了精确/不精确(PNP)模型,以确定 Brunswik 的主张是否可以被复制和扩展。在实验 1 中,我们证明了 PNP 模型可以重现 Brunswik 对感知任务和概念任务的区分。在实验 2 中,我们表明,即使在不涉及感知噪声的符号任务中,PNP 模型也可以根据误差分布来识别这两种类型的过程。在实验 3 中,我们应用 PNP 模型来验证多线索判断中涉及的基于规则的过程通常被认为是“准理性”的性质。结果表明,PNP 模型可靠地识别了 Brunswik 提出的两种认知过程,并且通常比具有同质高斯误差的标准回归模型更有效地恢复过程参数,这表明标准高斯假设在许多任务中错误地指定了误差分布。我们讨论了利用误差分布来识别认知过程的未开发潜力,以及 PNP 模型如何与双系统理论中的直觉和分析争论相关,并能为其提供启示。