Department of Family and Community Medicine, University of California San Francisco, San Francisco, CA 94110, USA.
Department of Health Sciences, Furman University, Greenville, SC 29613, USA.
Int J Environ Res Public Health. 2020 Sep 25;17(19):7032. doi: 10.3390/ijerph17197032.
Anecdotal reports suggest a rise in anti-Asian racial attitudes and discrimination in response to COVID-19. Racism can have significant social, economic, and health impacts, but there has been little systematic investigation of increases in anti-Asian prejudice. We utilized Twitter's Streaming Application Programming Interface (API) to collect 3,377,295 U.S. race-related tweets from November 2019-June 2020. Sentiment analysis was performed using support vector machine (SVM), a supervised machine learning model. Accuracy for identifying negative sentiments, comparing the machine learning model to manually labeled tweets was 91%. We investigated changes in racial sentiment before and following the emergence of COVID-19. The proportion of negative tweets referencing Asians increased by 68.4% (from 9.79% in November to 16.49% in March). In contrast, the proportion of negative tweets referencing other racial/ethnic minorities (Blacks and Latinx) remained relatively stable during this time period, declining less than 1% for tweets referencing Blacks and increasing by 2% for tweets referencing Latinx. Common themes that emerged during the content analysis of a random subsample of 3300 tweets included: racism and blame (20%), anti-racism (20%), and daily life impact (27%). Social media data can be used to provide timely information to investigate shifts in area-level racial sentiment.
有传闻称,针对 COVID-19,反亚裔种族态度和歧视有所增加。种族主义会对社会、经济和健康产生重大影响,但针对反亚裔偏见增加的系统性研究甚少。我们利用 Twitter 的 Streaming Application Programming Interface (API) 从 2019 年 11 月至 2020 年 6 月收集了 3377295 条与美国种族相关的推文。使用支持向量机 (SVM) 对这些推文进行了情感分析,SVM 是一种监督机器学习模型。与手动标记的推文相比,该机器学习模型在识别负面情绪方面的准确率为 91%。我们调查了 COVID-19 出现前后种族情绪的变化。提及亚洲人的负面推文比例增加了 68.4%(从 11 月的 9.79%增加到 3 月的 16.49%)。相比之下,在此期间,提及其他少数族裔(非裔和拉丁裔)的负面推文比例相对稳定,提及非裔的推文比例下降不到 1%,提及拉丁裔的推文比例增加 2%。在对 3300 条随机抽样推文的内容分析中出现的常见主题包括:种族主义和指责(20%)、反种族主义(20%)和日常生活影响(27%)。社交媒体数据可用于提供及时信息,以调查区域层面种族情绪的变化。