Suppr超能文献

通过3D打印和盐析法制备的支架的比较:体内成像、生物降解和炎症反应

Comparison of Scaffolds Fabricated via 3D Printing and Salt Leaching: In Vivo Imaging, Biodegradation, and Inflammation.

作者信息

Kwon Doo Yeon, Park Joon Yeong, Lee Bun Yeoul, Kim Moon Suk

机构信息

Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.

出版信息

Polymers (Basel). 2020 Sep 26;12(10):2210. doi: 10.3390/polym12102210.

Abstract

In this work, we prepared fluorescently labeled poly(ε-caprolactone-ran-lactic acid) (PCLA-F) as a biomaterial to fabricate three-dimensional (3D) scaffolds via salt leaching and 3D printing. The salt-leached PCLA-F scaffold was fabricated using NaCl and methylene chloride, and it had an irregular, interconnected 3D structure. The printed PCLA-F scaffold was fabricated using a fused deposition modeling printer, and it had a layered, orthogonally oriented 3D structure. The printed scaffold fabrication method was clearly more efficient than the salt leaching method in terms of productivity and repeatability. In the in vivo fluorescence imaging of mice and gel permeation chromatography of scaffolds removed from rats, the salt-leached PCLA scaffolds showed slightly faster degradation than the printed PCLA scaffolds. In the inflammation reaction, the printed PCLA scaffolds induced a slightly stronger inflammation reaction due to the slower biodegradation. Collectively, we can conclude that in vivo biodegradability and inflammation of scaffolds were affected by the scaffold fabrication method.

摘要

在本研究中,我们制备了荧光标记的聚(ε-己内酯-无规-乳酸)(PCLA-F)作为生物材料,通过盐析法和3D打印来制造三维(3D)支架。盐析法制备的PCLA-F支架是使用氯化钠和二氯甲烷制成的,具有不规则的、相互连接的三维结构。打印的PCLA-F支架是使用熔融沉积建模打印机制造的,具有分层的、正交取向的三维结构。就生产率和可重复性而言,打印支架的制造方法明显比盐析法更高效。在小鼠的体内荧光成像以及从大鼠体内取出的支架的凝胶渗透色谱分析中,盐析法制备的PCLA支架的降解速度比打印的PCLA支架略快。在炎症反应中,由于生物降解较慢,打印的PCLA支架引发的炎症反应略强。总体而言,我们可以得出结论,支架的体内生物降解性和炎症反应受支架制造方法的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f710/7599662/81f9ed8ddfc7/polymers-12-02210-g001.jpg

相似文献

3
Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching.
Mater Sci Eng C Mater Biol Appl. 2016 Apr 1;61:180-9. doi: 10.1016/j.msec.2015.12.032. Epub 2015 Dec 19.
4
In vivo biofunctionality comparison of different topographic PLLA scaffolds.
J Biomed Mater Res A. 2012 Jul;100(7):1751-60. doi: 10.1002/jbm.a.34135. Epub 2012 Mar 29.
6
In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone).
Biomaterials. 2012 Jun;33(17):4309-18. doi: 10.1016/j.biomaterials.2012.03.002. Epub 2012 Mar 20.
7
Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering.
J Biomater Sci Polym Ed. 2017 Nov;28(16):1797-1825. doi: 10.1080/09205063.2017.1354674. Epub 2017 Jul 24.
8
Evaluation of mechanical strength and bone regeneration ability of 3D printed kagome-structure scaffold using rabbit calvarial defect model.
Mater Sci Eng C Mater Biol Appl. 2019 May;98:949-959. doi: 10.1016/j.msec.2019.01.050. Epub 2019 Jan 14.
10
A combined compression molding, heating, and leaching process for fabrication of micro-porous poly(ε-caprolactone) scaffolds.
J Biomater Sci Polym Ed. 2018 Nov;29(16):1978-1993. doi: 10.1080/09205063.2018.1498719. Epub 2018 Oct 30.

引用本文的文献

1
Biodegradable Polyesters: Approaches to Increase Degradation Rates for Biomedical Applications.
ACS Macro Lett. 2025 Aug 19;14(8):1221-1240. doi: 10.1021/acsmacrolett.5c00417. Epub 2025 Aug 10.
2
3D digital light process bioprinting: Cutting-edge platforms for resolution of organ fabrication.
Mater Today Bio. 2024 Oct 2;29:101284. doi: 10.1016/j.mtbio.2024.101284. eCollection 2024 Dec.
3
3D-printed thermally expanded monolithic foam for solid-phase extraction of multiple trace metals.
Mikrochim Acta. 2024 Sep 13;191(10):598. doi: 10.1007/s00604-024-06691-9.
4
Tracheal Tissue Engineering: Principles and State of the Art.
Bioengineering (Basel). 2024 Feb 19;11(2):198. doi: 10.3390/bioengineering11020198.
8
Aspects of In Vitro Biodegradation of Hybrid Fibrin-Collagen Scaffolds.
Polymers (Basel). 2021 Oct 10;13(20):3470. doi: 10.3390/polym13203470.
9
Scaffold printing using biodegradable poly(1,4-butylene carbonate) ink: printability, physicochemical properties, and biocompatibility.
Mater Today Bio. 2021 Aug 31;12:100129. doi: 10.1016/j.mtbio.2021.100129. eCollection 2021 Sep.

本文引用的文献

2
Injectable hydrogels: a new paradigm for osteochondral tissue engineering.
J Mater Chem B. 2018 Sep 21;6(35):5499-5529. doi: 10.1039/c8tb01430b. Epub 2018 Aug 24.
3
Biodegradable polyester unimolecular systems as emerging materials for therapeutic applications.
J Mater Chem B. 2018 Sep 21;6(35):5488-5498. doi: 10.1039/c8tb01883a. Epub 2018 Aug 28.
4
Rapid development of dual porous poly(lactic acid) foam using fused deposition modeling (FDM) 3D printing for medical scaffold application.
Mater Sci Eng C Mater Biol Appl. 2020 May;110:110693. doi: 10.1016/j.msec.2020.110693. Epub 2020 Jan 27.
5
Solvent-Free Approaches for the Processing of Scaffolds in Regenerative Medicine.
Polymers (Basel). 2020 Mar 2;12(3):533. doi: 10.3390/polym12030533.
6
Specialty Tough Hydrogels and Their Biomedical Applications.
Adv Healthc Mater. 2020 Jan;9(2):e1901396. doi: 10.1002/adhm.201901396. Epub 2019 Dec 17.
9
Hierarchically designed bone scaffolds: From internal cues to external stimuli.
Biomaterials. 2019 Oct;218:119334. doi: 10.1016/j.biomaterials.2019.119334. Epub 2019 Jul 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验