Suppr超能文献

小儿精神障碍的数字图像不能准确呈现这些病症。

Digital images of pediatric mental disorders do not accurately represent the conditions.

作者信息

Brassine Joren, Van den Eynde Jef, Hubble Talia Rose, Toelen Jaan

机构信息

Faculty of Medicine, KU Leuven, Leuven, Belgium.

Medical Sciences Division, University of Oxford, Oxford, United Kingdom.

出版信息

Heliyon. 2020 Sep 22;6(9):e05017. doi: 10.1016/j.heliyon.2020.e05017. eCollection 2020 Sep.

Abstract

OBJECTIVE

Digital images might contribute to stigma associated with mental disorders. The aim of this study was to investigate whether these images accurately represent pediatric mental disorders, as well as to explore specific image-related factors that influence perception.

METHODS

Four hundred pictures were retrieved from three stock photograph websites ('Shutterstock', 'iStock' and 'Adobe') and 'Google Images' for mental disorders (ADHD, ASD, and depression) and somatic diseases (asthma, diabetes, and influenza) in childhood. Each picture was scored for gender, age, and emotional load. Data was compared against data from epidemiological studies. Ordinal regression was used to predict emotional load from image-related factors.

RESULTS

There was a significant difference in gender representation of ADHD, ASD, depression, diabetes, and influenza. With respect to age, models were significantly younger in pictures of depression but older in pictures of influenza. Pictures of ASD, asthma and diabetes were mostly positive; however, images for ADHD, depression and influenza carried more negative connotations. For mental disorders, a more positive emotional load was associated with images of young and/or male models. iStock gave more positive images.

CONCLUSIONS

Digital images available in stock databases do not accurately represent pediatric mental and somatic disease. For mental disorders, image-related factors (including age, gender and emotional load) may influence societal perception.

摘要

目的

数字图像可能会加重与精神障碍相关的污名化。本研究旨在调查这些图像是否准确呈现了儿童精神障碍,以及探索影响认知的特定图像相关因素。

方法

从三个图片素材网站(“Shutterstock”、“iStock”和“Adobe”)以及“谷歌图片”中检索了400张关于儿童精神障碍(注意力缺陷多动障碍、自闭症谱系障碍和抑郁症)和躯体疾病(哮喘、糖尿病和流感)的图片。对每张图片的性别、年龄和情感负荷进行评分。将数据与流行病学研究的数据进行比较。使用有序回归从图像相关因素预测情感负荷。

结果

注意力缺陷多动障碍、自闭症谱系障碍、抑郁症、糖尿病和流感的性别呈现存在显著差异。在年龄方面,抑郁症图片中的模型明显更年轻,而流感图片中的模型则更年长。自闭症谱系障碍、哮喘和糖尿病的图片大多为正面;然而,注意力缺陷多动障碍、抑郁症和流感的图像带有更多负面含义。对于精神障碍,更积极的情感负荷与年轻和/或男性模型的图像相关。iStock提供的图片更积极。

结论

图片素材数据库中的数字图像不能准确呈现儿童精神和躯体疾病。对于精神障碍,图像相关因素(包括年龄、性别和情感负荷)可能会影响社会认知。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/303b/7511816/7b811ec2a4d7/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验