Hoese Michael, Reddy Prithvi, Dietrich Andreas, Koch Michael K, Fehler Konstantin G, Doherty Marcus W, Kubanek Alexander
Institute for Quantum Optics, Ulm University, D-89081 Ulm, Germany.
Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Australian Capital Territory 2601, Australia.
Sci Adv. 2020 Sep 30;6(40). doi: 10.1126/sciadv.aba6038. Print 2020 Sep.
Quantum emitters in hexagonal boron nitride were recently reported to hold unusual narrow homogeneous linewidths of tens of megahertz within the Fourier transform limit at room temperature. This unique observation was traced back to decoupling from in-plane phonon modes. Here, we investigate the origins for the mechanical decoupling. New sample preparation improved spectral diffusion, which allowed us to reveal a gap in the electron-phonon spectral density for low phonon frequencies. This sign for mechanical decoupling persists up to room temperature and explains the observed narrow lines at 300 kelvin. We investigate the dipole emission directionality and reveal preferred photon emission through channels between the layers supporting the claim for out-of-plane distorted defect centers. Our work provides insights into the underlying physics for the persistence of Fourier transform limit lines up to room temperature and gives a guide to the community on how to identify the exotic emitters.
最近有报道称,六方氮化硼中的量子发射器在室温下的傅里叶变换极限内具有异常窄的几十兆赫兹的均匀线宽。这一独特的观测结果可追溯到与面内声子模式的解耦。在这里,我们研究了机械解耦的起源。新的样品制备改善了光谱扩散,这使我们能够揭示低声子频率下电子 - 声子光谱密度的间隙。这种机械解耦的迹象一直持续到室温,并解释了在300开尔文时观测到的窄线。我们研究了偶极发射方向性,并揭示了通过层间通道的优先光子发射,支持了面外扭曲缺陷中心的说法。我们的工作为傅里叶变换极限线在室温下持续存在的潜在物理机制提供了见解,并为该领域提供了如何识别奇异发射器的指南。