Suppr超能文献

孟德尔随机化同时联合建模顺式遗传学,确定基因表达与脂质之间的因果关系。

Mendelian randomization while jointly modeling cis genetics identifies causal relationships between gene expression and lipids.

机构信息

University of Groningen, University Medical Centre Groningen, Department of Genetics, Antonius Deusinglaan 1, 9713, Groningen, AV, The Netherlands.

Oncode institute, Office Jaarbeurs Innovation Mile (JIM), Jaarbeursplein 6, 3521, Utrecht, AL, The Netherlands.

出版信息

Nat Commun. 2020 Oct 1;11(1):4930. doi: 10.1038/s41467-020-18716-x.

Abstract

Inference of causality between gene expression and complex traits using Mendelian randomization (MR) is confounded by pleiotropy and linkage disequilibrium (LD) of gene-expression quantitative trait loci (eQTL). Here, we propose an MR method, MR-link, that accounts for unobserved pleiotropy and LD by leveraging information from individual-level data, even when only one eQTL variant is present. In simulations, MR-link shows false-positive rates close to expectation (median 0.05) and high power (up to 0.89), outperforming all other tested MR methods and coloc. Application of MR-link to low-density lipoprotein cholesterol (LDL-C) measurements in 12,449 individuals with expression and protein QTL summary statistics from blood and liver identifies 25 genes causally linked to LDL-C. These include the known SORT1 and ApoE genes as well as PVRL2, located in the APOE locus, for which a causal role in liver was not known. Our results showcase the strength of MR-link for transcriptome-wide causal inferences.

摘要

利用孟德尔随机化(MR)推断基因表达与复杂性状之间的因果关系受到基因表达数量性状基因座(eQTL)的多效性和连锁不平衡(LD)的影响。在这里,我们提出了一种 MR 方法 MR-link,该方法通过利用个体水平数据中的信息来解释未观察到的多效性和 LD,即使只存在一个 eQTL 变体。在模拟中,MR-link 的假阳性率接近预期(中位数为 0.05),并且具有很高的功效(高达 0.89),优于所有其他测试的 MR 方法和 coloc。将 MR-link 应用于 12449 名个体的低密度脂蛋白胆固醇(LDL-C)测量值,这些个体的血液和肝脏中的表达和蛋白质 QTL 汇总统计信息,确定了 25 个与 LDL-C 因果相关的基因。其中包括已知的 SORT1 和 ApoE 基因以及位于 APOE 基因座的 PVRL2 基因,该基因在肝脏中的因果作用尚不清楚。我们的结果展示了 MR-link 进行全转录组因果推断的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac0f/7530717/c6dcf09e0636/41467_2020_18716_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验