文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

重新定位 - 乙酰半胱氨酸(NAC):用于潜在神经组织工程应用的载有NAC的电纺药物递送支架。

Repositioning -Acetylcysteine (NAC): NAC-Loaded Electrospun Drug Delivery Scaffolding for Potential Neural Tissue Engineering Application.

作者信息

Mahumane Gillian D, Kumar Pradeep, Pillay Viness, Choonara Yahya E

机构信息

Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.

出版信息

Pharmaceutics. 2020 Sep 30;12(10):934. doi: 10.3390/pharmaceutics12100934.


DOI:10.3390/pharmaceutics12100934
PMID:33007830
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7601117/
Abstract

Traumatic brain injury (TBI) presents a serious challenge for modern medicine due to the poor regenerative capabilities of the brain, complex pathophysiology, and lack of effective treatment for TBI to date. Tissue-engineered scaffolds have shown some experimental success in vivo; unfortunately, none have yielded consummate results of clinical efficacy. N-acetylcysteine has shown neuroprotective potential. To this end, we developed a N-acetylcysteine (NAC)-loaded poly(lactic-co-glycolic acid) (PLGA) electrospun system for potential neural tissue application for TBI. Scanning electron microscopy showed nanofiber diameters ranging 72-542 nm and 124-592 nm for NAC-free and NAC-loaded PLGA nanofibers, respectively. NAC loading was obtained at 28%, and drug entrapment efficacy was obtained at 84%. A biphasic NAC release pattern that featured an initial burst release (13.9%) stage and a later sustained release stage was noted, thus enabling the prolonged replenishing of NAC and drastically improving cell viability and proliferation. This was evidenced by a significantly higher cell viability and proliferation on NAC-loaded nanofibers for rat pheochromocytoma (PC12) and human glioblastoma multiform (A172) cell lines in comparison to PLGA-only nanofibers. The increased cell viability and cell proliferation on NAC-loaded nanofiber substantiates for the repositioning of NAC as a pharmacological agent in neural tissue regeneration applications.

摘要

由于大脑再生能力差、病理生理学复杂,且迄今为止缺乏有效的创伤性脑损伤(TBI)治疗方法,TBI对现代医学提出了严峻挑战。组织工程支架在体内实验中已取得了一些成功;不幸的是,尚无一种能产生完美的临床疗效结果。N-乙酰半胱氨酸已显示出神经保护潜力。为此,我们开发了一种负载N-乙酰半胱氨酸(NAC)的聚乳酸-乙醇酸共聚物(PLGA)电纺系统,用于TBI的潜在神经组织应用。扫描电子显微镜显示,无NAC和负载NAC的PLGA纳米纤维的纳米纤维直径分别为72-542纳米和124-592纳米。NAC负载量为28%,药物包封率为84%。观察到一种双相NAC释放模式,其特征为初始爆发释放(13.9%)阶段和随后的持续释放阶段,从而能够长期补充NAC,并显著提高细胞活力和增殖。与仅PLGA纳米纤维相比,负载NAC的纳米纤维上大鼠嗜铬细胞瘤(PC12)和人多形性胶质母细胞瘤(A172)细胞系的细胞活力和增殖显著更高,证明了这一点。负载NAC的纳米纤维上细胞活力和细胞增殖的增加证实了NAC作为神经组织再生应用中的一种药物的重新定位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/587b/7601117/8791c1a776cf/pharmaceutics-12-00934-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/587b/7601117/180db9cc5663/pharmaceutics-12-00934-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/587b/7601117/cb821b23c5b3/pharmaceutics-12-00934-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/587b/7601117/336003e0c2ea/pharmaceutics-12-00934-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/587b/7601117/00a3c5b02f03/pharmaceutics-12-00934-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/587b/7601117/14ae847d8b7a/pharmaceutics-12-00934-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/587b/7601117/92a406488b4f/pharmaceutics-12-00934-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/587b/7601117/b3a7d9064200/pharmaceutics-12-00934-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/587b/7601117/8791c1a776cf/pharmaceutics-12-00934-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/587b/7601117/180db9cc5663/pharmaceutics-12-00934-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/587b/7601117/cb821b23c5b3/pharmaceutics-12-00934-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/587b/7601117/336003e0c2ea/pharmaceutics-12-00934-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/587b/7601117/00a3c5b02f03/pharmaceutics-12-00934-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/587b/7601117/14ae847d8b7a/pharmaceutics-12-00934-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/587b/7601117/92a406488b4f/pharmaceutics-12-00934-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/587b/7601117/b3a7d9064200/pharmaceutics-12-00934-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/587b/7601117/8791c1a776cf/pharmaceutics-12-00934-g008.jpg

相似文献

[1]
Repositioning -Acetylcysteine (NAC): NAC-Loaded Electrospun Drug Delivery Scaffolding for Potential Neural Tissue Engineering Application.

Pharmaceutics. 2020-9-30

[2]
NAC-loaded electrospun scaffolding system with dual compartments for the osteogenesis of rBMSCs in vitro.

Int J Nanomedicine. 2019-1-23

[3]
Formulation and characterization of injectable poly(DL-lactide-co-glycolide) implants loaded with N-acetylcysteine, a MMP inhibitor.

Pharm Res. 2008-3

[4]
The Effects of Lactidyl/Glycolidyl Ratio and Molecular Weight of Poly(D,L -Lactide-co-Glycolide) on the Tetracycline Entrapment and Release Kinetics of Drug-Loaded Nanofibers.

J Biomater Sci Polym Ed. 2012

[5]
Prodigiosin-loaded electrospun nanofibers scaffold for localized treatment of triple negative breast cancer.

Mater Sci Eng C Mater Biol Appl. 2020-9

[6]
3D imaging of cell interactions with electrospun PLGA nanofiber membranes for bone regeneration.

Acta Biomater. 2015-9-5

[7]
Controlled release and antibacterial activity of antibiotic-loaded electrospun halloysite/poly(lactic-co-glycolic acid) composite nanofibers.

Colloids Surf B Biointerfaces. 2013-4-30

[8]
Preparation and characterization of poly (lactic-co-glycolic acid) nanofibers containing simvastatin coated with hyaluronic acid for using in periodontal tissue engineering.

Biotechnol Prog. 2021-11

[9]
Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration.

Mater Sci Eng C Mater Biol Appl. 2016-1-1

[10]
Preparation and characterization of electrospun PLGA/gelatin nanofibers as a drug delivery system by emulsion electrospinning.

J Biomater Sci Polym Ed. 2012-9-25

引用本文的文献

[1]
Inhalable N-Acetylcysteine-loaded Lactose-coated PLGA Nanoparticles for Tuberculosis Treatment.

Pharm Res. 2025-7-10

[2]
3D printing of interferon γ-preconditioned NSC-derived exosomes/collagen/chitosan biological scaffolds for neurological recovery after TBI.

Bioact Mater. 2024-5-28

[3]
Recent progresses in neural tissue engineering using topographic scaffolds.

Am J Stem Cells. 2024-2-25

[4]
Biomaterials in Traumatic Brain Injury: Perspectives and Challenges.

Biology (Basel). 2023-12-29

[5]
Integrated printed BDNF-stimulated HUCMSCs-derived exosomes/collagen/chitosan biological scaffolds with 3D printing technology promoted the remodelling of neural networks after traumatic brain injury.

Regen Biomater. 2022-10-26

[6]
Targeting Molecular Mediators of Ferroptosis and Oxidative Stress for Neurological Disorders.

Oxid Med Cell Longev. 2022

[7]
Antioxidative NAC-Loaded Silk Nanoparticles with Opening Mucosal Tight Junctions for Nasal Drug Delivery: An In Vitro and In Vivo Study.

Pharmaceutics. 2022-6-17

[8]
Inhalation potential of N-Acetylcysteine loaded PLGA nanoparticles for the management of tuberculosis: lung deposition and efficacy studies.

Curr Res Pharmacol Drug Discov. 2022-1-18

[9]
Electrospun Membranes as a Porous Barrier for Molecular Transport: Membrane Characterization and Release Assessment.

Pharmaceutics. 2021-6-21

[10]
Antioxidant Therapeutics in Parkinson's Disease: Current Challenges and Opportunities.

Antioxidants (Basel). 2021-3-15

本文引用的文献

[1]
Glial Scar-a Promising Target for Improving Outcomes After CNS Injury.

J Mol Neurosci. 2020-3

[2]
Design and characterisation of PHBV-magnesium oleate directional nanofibers for neurosupport.

Biomed Mater. 2019-10-17

[3]
Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare.

J Control Release. 2019-3-26

[4]
Pt-free, low-cost and efficient counter electrode with carbon wrapped VO(M) nanofiber for dye-sensitized solar cells.

Sci Rep. 2019-3-26

[5]
NAC-loaded electrospun scaffolding system with dual compartments for the osteogenesis of rBMSCs in vitro.

Int J Nanomedicine. 2019-1-23

[6]
The influence of the stiffness of GelMA substrate on the outgrowth of PC12 cells.

Biosci Rep. 2019-1-18

[7]
3D scaffolds for brain tissue regeneration: architectural challenges.

Biomater Sci. 2018-10-24

[8]
Combining PLGA Scaffold and MSCs for Brain Tissue Engineering: A Potential Tool for Treatment of Brain Injury.

Stem Cells Int. 2018-8-5

[9]
Nano-Architectural Approaches for Improved Intracortical Interface Technologies.

Front Neurosci. 2018-7-17

[10]
Aiming for the target: Mitochondrial drug delivery in traumatic brain injury.

Neuropharmacology. 2018-7-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索