Mahumane Gillian D, Kumar Pradeep, Pillay Viness, Choonara Yahya E
Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.
Pharmaceutics. 2020 Sep 30;12(10):934. doi: 10.3390/pharmaceutics12100934.
Traumatic brain injury (TBI) presents a serious challenge for modern medicine due to the poor regenerative capabilities of the brain, complex pathophysiology, and lack of effective treatment for TBI to date. Tissue-engineered scaffolds have shown some experimental success in vivo; unfortunately, none have yielded consummate results of clinical efficacy. N-acetylcysteine has shown neuroprotective potential. To this end, we developed a N-acetylcysteine (NAC)-loaded poly(lactic-co-glycolic acid) (PLGA) electrospun system for potential neural tissue application for TBI. Scanning electron microscopy showed nanofiber diameters ranging 72-542 nm and 124-592 nm for NAC-free and NAC-loaded PLGA nanofibers, respectively. NAC loading was obtained at 28%, and drug entrapment efficacy was obtained at 84%. A biphasic NAC release pattern that featured an initial burst release (13.9%) stage and a later sustained release stage was noted, thus enabling the prolonged replenishing of NAC and drastically improving cell viability and proliferation. This was evidenced by a significantly higher cell viability and proliferation on NAC-loaded nanofibers for rat pheochromocytoma (PC12) and human glioblastoma multiform (A172) cell lines in comparison to PLGA-only nanofibers. The increased cell viability and cell proliferation on NAC-loaded nanofiber substantiates for the repositioning of NAC as a pharmacological agent in neural tissue regeneration applications.
由于大脑再生能力差、病理生理学复杂,且迄今为止缺乏有效的创伤性脑损伤(TBI)治疗方法,TBI对现代医学提出了严峻挑战。组织工程支架在体内实验中已取得了一些成功;不幸的是,尚无一种能产生完美的临床疗效结果。N-乙酰半胱氨酸已显示出神经保护潜力。为此,我们开发了一种负载N-乙酰半胱氨酸(NAC)的聚乳酸-乙醇酸共聚物(PLGA)电纺系统,用于TBI的潜在神经组织应用。扫描电子显微镜显示,无NAC和负载NAC的PLGA纳米纤维的纳米纤维直径分别为72-542纳米和124-592纳米。NAC负载量为28%,药物包封率为84%。观察到一种双相NAC释放模式,其特征为初始爆发释放(13.9%)阶段和随后的持续释放阶段,从而能够长期补充NAC,并显著提高细胞活力和增殖。与仅PLGA纳米纤维相比,负载NAC的纳米纤维上大鼠嗜铬细胞瘤(PC12)和人多形性胶质母细胞瘤(A172)细胞系的细胞活力和增殖显著更高,证明了这一点。负载NAC的纳米纤维上细胞活力和细胞增殖的增加证实了NAC作为神经组织再生应用中的一种药物的重新定位。
Int J Nanomedicine. 2019-1-23
Mater Sci Eng C Mater Biol Appl. 2020-9
Colloids Surf B Biointerfaces. 2013-4-30
Mater Sci Eng C Mater Biol Appl. 2016-1-1
J Biomater Sci Polym Ed. 2012-9-25
Am J Stem Cells. 2024-2-25
Biology (Basel). 2023-12-29
Oxid Med Cell Longev. 2022
Curr Res Pharmacol Drug Discov. 2022-1-18
Antioxidants (Basel). 2021-3-15
J Mol Neurosci. 2020-3
Biomed Mater. 2019-10-17
J Control Release. 2019-3-26
Int J Nanomedicine. 2019-1-23
Biosci Rep. 2019-1-18
Biomater Sci. 2018-10-24
Front Neurosci. 2018-7-17
Neuropharmacology. 2018-7-30