双层杂化纳米纤维素-胶原蛋白作为潜在伤口敷料的物理化学表征
Physicochemical Characterization of Bilayer Hybrid Nanocellulose-Collagen as a Potential Wound Dressing.
作者信息
Ooi Kai Shen, Haszman Shafieq, Wong Yon Nie, Soidin Emillia, Hesham Nadhirah, Mior Muhammad Amirul Arif, Tabata Yasuhiko, Ahmad Ishak, Fauzi Mh Busra, Mohd Yunus Mohd Heikal
机构信息
Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia.
Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia.
出版信息
Materials (Basel). 2020 Sep 30;13(19):4352. doi: 10.3390/ma13194352.
The eminent aim for advance wound management is to provide a great impact on the quality of life. Therefore, an excellent strategy for an ideal wound dressing is being developed that eliminates certain drawbacks while promoting tissue regeneration for the prevention of bacterial invasion. The aim of this study is to develop a bilayer hybrid biomatrix of natural origin for wound dressing. The bilayer hybrid bioscaffold was fabricated by the combination of ovine tendon collagen type I and palm tree-based nanocellulose. The fabricated biomatrix was then post-cross-linked with 0.1% () genipin (GNP). The physical characteristics were evaluated based on the microstructure, pore size, porosity, and water uptake capacity followed by degradation behaviour and mechanical strength. Chemical analysis was performed using energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectrophotometry (FTIR), and X-ray diffraction (XRD). The results demonstrated a uniform interconnected porous structure with optimal pore size ranging between 90 and 140 μm, acceptable porosity (>70%), and highwater uptake capacity (>1500%). The biodegradation rate of the fabricated biomatrix was extended to 22 days. Further analysis with EDX identified the main elements of the bioscaffold, which contains carbon (C) 50.28%, nitrogen (N) 18.78%, and oxygen (O) 30.94% based on the atomic percentage. FTIR reported the functional groups of collagen type I (amide A: 3302 cm, amide B: 2926 cm, amide I: 1631 cm, amide II: 1547 cm, and amide III: 1237 cm) and nanocellulose (pyranose ring), thus confirming the presence of collagen and nanocellulose in the bilayer hybrid scaffold. The XRD demonstrated a smooth wavy wavelength that is consistent with the amorphous material and less crystallinity. The combination of nanocellulose with collagen demonstrated a positive effect with an increase of Young's modulus. In conclusion, the fabricated bilayer hybrid bioscaffold demonstrated optimum physicochemical and mechanical properties that are suitable for skin wound dressing.
先进伤口管理的突出目标是对生活质量产生重大影响。因此,正在开发一种理想伤口敷料的卓越策略,该策略在促进组织再生以防止细菌入侵的同时消除某些缺点。本研究的目的是开发一种用于伤口敷料的天然来源的双层混合生物基质。通过将I型羊肌腱胶原蛋白和棕榈树基纳米纤维素结合来制备双层混合生物支架。然后将制备的生物基质与0.1%()京尼平(GNP)进行后交联。基于微观结构、孔径、孔隙率和吸水能力评估物理特性,随后评估降解行为和机械强度。使用能量色散X射线光谱(EDX)、傅里叶变换红外光谱(FTIR)和X射线衍射(XRD)进行化学分析。结果表明具有均匀互连的多孔结构,最佳孔径在90至140μm之间,孔隙率可接受(>70%),吸水能力高(>1500%)。制备的生物基质的生物降解率延长至22天。用EDX进一步分析确定了生物支架的主要元素,基于原子百分比,其含有碳(C)50.28%、氮(N)18.78%和氧(O)30.94%。FTIR报告了I型胶原蛋白(酰胺A:3302cm,酰胺B:2926cm,酰胺I:1631cm,酰胺II:1547cm,酰胺III:1237cm)和纳米纤维素(吡喃糖环)的官能团,从而证实了双层混合支架中胶原蛋白和纳米纤维素的存在。XRD显示出与无定形材料一致且结晶度较低的平滑波浪波长。纳米纤维素与胶原蛋白的组合显示出积极效果,杨氏模量增加。总之,制备的双层混合生物支架表现出适合皮肤伤口敷料的最佳物理化学和机械性能。