Suppr超能文献

用于从脑电图数据中进行精确癫痫发作检测和分类的动态图神经网络

Dynamic GNNs for Precise Seizure Detection and Classification from EEG Data.

作者信息

Hajisafi Arash, Lin Haowen, Chiang Yao-Yi, Shahabi Cyrus

机构信息

University of Southern California, Los Angeles, CA, USA.

University of Minnesota, Minneapolis, MN, USA.

出版信息

Adv Knowl Discov Data Min. 2024 May;14648:207-220. doi: 10.1007/978-981-97-2238-9_16. Epub 2024 May 1.

Abstract

Diagnosing epilepsy requires accurate seizure detection and classification, but traditional manual EEG signal analysis is resource-intensive. Meanwhile, automated algorithms often overlook EEG's geometric and semantic properties critical for interpreting brain activity. This paper introduces NeuroGNN, a dynamic Graph Neural Network (GNN) framework that captures the dynamic interplay between the EEG electrode locations and the semantics of their corresponding brain regions. The specific brain region where an electrode is placed critically shapes the nature of captured EEG signals. Each brain region governs distinct cognitive functions, emotions, and sensory processing, influencing both the semantic and spatial relationships within the EEG data. Understanding and modeling these intricate brain relationships are essential for accurate and meaningful insights into brain activity. This is precisely where the proposed NeuroGNN framework excels by dynamically constructing a graph that encapsulates these evolving spatial, temporal, semantic, and taxonomic correlations to improve precision in seizure detection and classification. Our extensive experiments with real-world data demonstrate that NeuroGNN significantly outperforms existing state-of-the-art models.

摘要

诊断癫痫需要准确的癫痫发作检测和分类,但传统的手动脑电图(EEG)信号分析资源消耗大。与此同时,自动化算法常常忽略对解释大脑活动至关重要的脑电图的几何和语义特性。本文介绍了NeuroGNN,这是一种动态图神经网络(GNN)框架,它捕捉脑电图电极位置与其相应脑区语义之间的动态相互作用。放置电极的特定脑区对捕获的脑电图信号的性质起着关键作用。每个脑区掌管着不同的认知功能、情绪和感觉处理,影响着脑电图数据中的语义和空间关系。理解和建模这些复杂的大脑关系对于准确而有意义地洞察大脑活动至关重要。这正是所提出的NeuroGNN框架的优势所在,它通过动态构建一个图来封装这些不断演变的空间、时间、语义和分类学相关性,以提高癫痫发作检测和分类的精度。我们对真实世界数据进行的大量实验表明,NeuroGNN显著优于现有的最先进模型。

相似文献

9
EEG-Based Seizure detection using linear graph convolution network with focal loss.基于线性图卷积网络和焦点损失的脑电癫痫检测。
Comput Methods Programs Biomed. 2021 Sep;208:106277. doi: 10.1016/j.cmpb.2021.106277. Epub 2021 Jul 13.
10
Multi-Domain Based Dynamic Graph Representation Learning for EEG Emotion Recognition.基于多领域的动态图表示学习的脑电情感识别。
IEEE J Biomed Health Inform. 2024 Sep;28(9):5227-5238. doi: 10.1109/JBHI.2024.3415163. Epub 2024 Sep 5.

本文引用的文献

2
Epileptic Seizures Detection Using Deep Learning Techniques: A Review.基于深度学习技术的癫痫发作检测:综述
Int J Environ Res Public Health. 2021 May 27;18(11):5780. doi: 10.3390/ijerph18115780.
4
Neural Memory Networks for Seizure Type Classification.用于癫痫发作类型分类的神经记忆网络
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:569-575. doi: 10.1109/EMBC44109.2020.9175641.
6
The Temple University Hospital Seizure Detection Corpus.天普大学医院癫痫发作检测语料库。
Front Neuroinform. 2018 Nov 14;12:83. doi: 10.3389/fninf.2018.00083. eCollection 2018.
7
Deep Learning Enabled Automatic Abnormal EEG Identification.基于深度学习的脑电图自动异常识别
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:2756-2759. doi: 10.1109/EMBC.2018.8512756.
10
The Temple University Hospital EEG Data Corpus.天普大学医院脑电图数据语料库。
Front Neurosci. 2016 May 13;10:196. doi: 10.3389/fnins.2016.00196. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验