Suppr超能文献

时间干扰经颅磁刺激:局部和动态刺激位置

Temporally Interfering TMS: Focal and Dynamic Stimulation Location.

作者信息

Sorkhabi Majid Memarian, Wendt Karen, Denison Timothy

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3537-3543. doi: 10.1109/EMBC44109.2020.9176249.

Abstract

In this study, we present a temporal interference (TI) concept to achieve focal and steerable stimulation in the targeted brain area through transcranial magnetic stimulation (TMS). This method works by inducing two high-frequency electric fields with a slight frequency difference via two independent coils. The intrinsic nonlinear nature of the nerve membrane, which acts as a low-pass filter, does not allow the nerve to engage at high frequencies. Instead, neurons at the intersection of two electric fields can follow the frequency difference of the two fields. For 3D MRI-derived head models, the finite element method is used to compute the electric field induced by the time-varying magnetic field along with the electric field penetration depth and the activated volume for the specific coil parameters. A deeper stimulation with an acceptable spatial spread can be obtained by controlling the intersection of the fields by finding the optimal position and orientation of the two coils. Moreover, by changing the voltage ratio of the coils, and not their mechanical orientation, the intended area can be dynamically driven. The computational results show that the TI technique is an efficient approach to resolve the electric field depth-focality trade-off, which can be a reasonable alternative to complex coil designs. The system proposed in this paper shows a great promise for a more dynamic and focused magnetic stimulation.

摘要

在本研究中,我们提出了一种时间干扰(TI)概念,通过经颅磁刺激(TMS)在目标脑区实现聚焦且可操纵的刺激。该方法通过两个独立线圈感应出频率略有差异的两个高频电场来工作。作为低通滤波器的神经膜的固有非线性特性不允许神经在高频下参与活动。相反,两个电场交叉处的神经元可以跟随这两个场的频率差。对于基于3D MRI得出的头部模型,使用有限元方法来计算时变磁场感应出的电场,以及特定线圈参数下的电场穿透深度和激活体积。通过找到两个线圈的最佳位置和方向来控制场的交叉点,可以获得具有可接受空间分布的更深刺激。此外,通过改变线圈的电压比而非其机械方向,可以动态驱动目标区域。计算结果表明,TI技术是解决电场深度与聚焦性权衡问题的有效方法,它可以作为复杂线圈设计的合理替代方案。本文提出的系统在实现更动态、更聚焦的磁刺激方面显示出巨大潜力。

相似文献

1
Temporally Interfering TMS: Focal and Dynamic Stimulation Location.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3537-3543. doi: 10.1109/EMBC44109.2020.9176249.
2
Design of transcranial magnetic stimulation coils with optimal trade-off between depth, focality, and energy.
J Neural Eng. 2018 Aug;15(4):046033. doi: 10.1088/1741-2552/aac967. Epub 2018 Jun 1.
3
Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs.
Brain Stimul. 2013 Jan;6(1):1-13. doi: 10.1016/j.brs.2012.02.005. Epub 2012 Mar 21.
4
Evaluation method for in situ electric field in standardized human brain for different transcranial magnetic stimulation coils.
Phys Med Biol. 2017 Mar 21;62(6):2224-2238. doi: 10.1088/1361-6560/aa5b70. Epub 2017 Feb 21.
5
Database of 25 validated coil models for electric field simulations for TMS.
Brain Stimul. 2022 May-Jun;15(3):697-706. doi: 10.1016/j.brs.2022.04.017. Epub 2022 Apr 28.
7
Minimum-energy coils for transcranial magnetic stimulation: application to focal stimulation.
Brain Stimul. 2015 Jan-Feb;8(1):124-34. doi: 10.1016/j.brs.2014.10.002. Epub 2014 Oct 13.
8
Magnetically Induced Temporal Interference for Focal and Deep-Brain Stimulation.
Front Hum Neurosci. 2021 Sep 27;15:693207. doi: 10.3389/fnhum.2021.693207. eCollection 2021.
10
Comprehensive Survey on Improved Focality and Penetration Depth of Transcranial Magnetic Stimulation Employing Multi-Coil Arrays.
Int J Environ Res Public Health. 2017 Nov 14;14(11):1388. doi: 10.3390/ijerph14111388.

引用本文的文献

1
Design of TI-TMS system for deep brain stimulation with higher focus in neural modulation.
Sci Rep. 2025 Jul 1;15(1):20757. doi: 10.1038/s41598-025-08598-8.
2
Numerical Modelling of Plasticity Induced by Quadri-Pulse Stimulation.
IEEE Access. 2021;9:26484-26490. doi: 10.1109/ACCESS.2021.3057829.
3
Prediction of hippocampal electric field in time series induced by TI-DMS with temporal convolutional network.
Cogn Neurodyn. 2024 Aug;18(4):2031-2045. doi: 10.1007/s11571-024-10067-3. Epub 2024 Feb 11.
4
Quasistatic approximation in neuromodulation.
J Neural Eng. 2024 Jul 24;21(4). doi: 10.1088/1741-2552/ad625e.
5
A mini-review: recent advancements in temporal interference stimulation in modulating brain function and behavior.
Front Hum Neurosci. 2023 Sep 14;17:1266753. doi: 10.3389/fnhum.2023.1266753. eCollection 2023.
6
Optimal Design of Array Coils for Multi-Target Adjustable Electromagnetic Brain Stimulation System.
Bioengineering (Basel). 2023 May 9;10(5):568. doi: 10.3390/bioengineering10050568.
7
[Study on deep brain magnetic stimulation method based on magnetic replicator].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Feb 25;40(1):1-7. doi: 10.7507/1001-5515.202210013.
10
Magnetically Induced Temporal Interference for Focal and Deep-Brain Stimulation.
Front Hum Neurosci. 2021 Sep 27;15:693207. doi: 10.3389/fnhum.2021.693207. eCollection 2021.

本文引用的文献

1
STIMULUS: Noninvasive Dynamic Patterns of Neurostimulation Using Spatio-Temporal Interference.
IEEE Trans Biomed Eng. 2020 Mar;67(3):726-737. doi: 10.1109/TBME.2019.2919912. Epub 2019 May 30.
2
Design of transcranial magnetic stimulation coils with optimal trade-off between depth, focality, and energy.
J Neural Eng. 2018 Aug;15(4):046033. doi: 10.1088/1741-2552/aac967. Epub 2018 Jun 1.
3
Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields.
Cell. 2017 Jun 1;169(6):1029-1041.e16. doi: 10.1016/j.cell.2017.05.024.
4
Theoretical Analysis of Transcranial Magneto-Acoustical Stimulation with Hodgkin-Huxley Neuron Model.
Front Comput Neurosci. 2016 Apr 19;10:35. doi: 10.3389/fncom.2016.00035. eCollection 2016.
5
Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs.
Brain Stimul. 2013 Jan;6(1):1-13. doi: 10.1016/j.brs.2012.02.005. Epub 2012 Mar 21.
6
Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices.
Brain Stimul. 2012 Oct;5(4):435-53. doi: 10.1016/j.brs.2011.10.001. Epub 2011 Nov 1.
7
Why image-guided navigation becomes essential in the practice of transcranial magnetic stimulation.
Neurophysiol Clin. 2010 Mar;40(1):1-5. doi: 10.1016/j.neucli.2009.10.004. Epub 2009 Nov 24.
8
Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research.
Clin Neurophysiol. 2009 Dec;120(12):2008-2039. doi: 10.1016/j.clinph.2009.08.016. Epub 2009 Oct 14.
10
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J Physiol. 1952 Aug;117(4):500-44. doi: 10.1113/jphysiol.1952.sp004764.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验