Suppr超能文献

基于液-液相分离的共溶质和拥挤效应对蛋白质凝聚物形成动力学的影响:压力跳跃弛豫研究。

The effects of cosolutes and crowding on the kinetics of protein condensate formation based on liquid-liquid phase separation: a pressure-jump relaxation study.

机构信息

Physical Chemistry I, Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany.

出版信息

Sci Rep. 2020 Oct 14;10(1):17245. doi: 10.1038/s41598-020-74271-x.

Abstract

Biomolecular assembly processes based on liquid-liquid phase separation (LLPS) are ubiquitous in the biological cell. To fully understand the role of LLPS in biological self-assembly, it is necessary to characterize also their kinetics of formation and dissolution. Here, we introduce the pressure-jump relaxation technique in concert with UV/Vis and FTIR spectroscopy as well as light microscopy to characterize the evolution of LLPS formation and dissolution in a time-dependent manner. As a model system undergoing LLPS we used the globular eye-lens protein γD-crystallin. As cosolutes and macromolecular crowding are known to affect the stability and dynamics of biomolecular condensates in cellulo, we extended our kinetic study by addressing also the impact of urea, the deep-sea osmolyte trimethylamine-N-oxide (TMAO) and a crowding agent on the transformation kinetics of the LLPS system. As a prerequisite for the kinetic studies, the phase diagram of γD-crystallin at the different solution conditions also had to be determined. The formation of the droplet phase was found to be a very rapid process and can be switched on and off on the 1-4 s timescale. Theoretical treatment using the Johnson-Mehl-Avrami-Kolmogorov model indicates that the LLPS proceeds via a diffusion-limited nucleation and growth mechanism at subcritical protein concentrations, a scenario which is also expected to prevail within biologically relevant crowded systems. Compared to the marked effect the cosolutes take on the stability of the LLPS region, their effect at biologically relevant concentrations on the phase transformation kinetics is very small, which might be a particular advantage in the cellular context, as a fast switching capability of the transition should not be compromised by the presence of cellular cosolutes.

摘要

基于液-液相分离(LLPS)的生物分子组装过程在生物细胞中普遍存在。为了充分了解 LLPS 在生物自组装中的作用,还需要对其形成和溶解的动力学进行表征。在这里,我们将压力跃变弛豫技术与紫外/可见和傅里叶变换红外光谱以及相差显微镜相结合,用于以时间依赖性的方式对 LLPS 形成和溶解的演变进行特征描述。作为经历 LLPS 的模型体系,我们使用球状眼晶状体蛋白 γD-晶体蛋白。由于共溶剂和大分子拥挤被认为会影响细胞内生物分子凝聚物的稳定性和动力学,因此我们通过研究尿素、深海渗透剂三甲基胺 N-氧化物 (TMAO) 和拥挤剂对 LLPS 体系转化动力学的影响,扩展了我们的动力学研究。作为动力学研究的前提条件,还必须确定在不同溶液条件下 γD-晶体蛋白的相图。液滴相的形成被发现是一个非常快速的过程,可以在 1-4 秒的时间尺度上开启和关闭。使用 Johnson-Mehl-Avrami-Kolmogorov 模型的理论处理表明,在亚临界蛋白浓度下,LLPS 通过扩散限制的成核和生长机制进行,这种情况也预计在具有生物学相关性的拥挤系统中普遍存在。与共溶剂对 LLPS 区域稳定性的显著影响相比,它们在生物学相关浓度下对相转变动力学的影响非常小,这在细胞环境中可能是一个特别的优势,因为细胞共溶剂的存在不应影响转变的快速切换能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e71/7566631/cfa59101b88f/41598_2020_74271_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验