Suppr超能文献

基于数据增强方法的 X 射线图像中 COVID-19 肺炎、非 COVID-19 肺炎与健康人群的自动分类

Automatic classification between COVID-19 pneumonia, non-COVID-19 pneumonia, and the healthy on chest X-ray image: combination of data augmentation methods.

机构信息

Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.

Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.

出版信息

Sci Rep. 2020 Oct 16;10(1):17532. doi: 10.1038/s41598-020-74539-2.

Abstract

This study aimed to develop and validate computer-aided diagnosis (CXDx) system for classification between COVID-19 pneumonia, non-COVID-19 pneumonia, and the healthy on chest X-ray (CXR) images. From two public datasets, 1248 CXR images were obtained, which included 215, 533, and 500 CXR images of COVID-19 pneumonia patients, non-COVID-19 pneumonia patients, and the healthy samples, respectively. The proposed CADx system utilized VGG16 as a pre-trained model and combination of conventional method and mixup as data augmentation methods. Other types of pre-trained models were compared with the VGG16-based model. Single type or no data augmentation methods were also evaluated. Splitting of training/validation/test sets was used when building and evaluating the CADx system. Three-category accuracy was evaluated for test set with 125 CXR images. The three-category accuracy of the CAD system was 83.6% between COVID-19 pneumonia, non-COVID-19 pneumonia, and the healthy. Sensitivity for COVID-19 pneumonia was more than 90%. The combination of conventional method and mixup was more useful than single type or no data augmentation method. In conclusion, this study was able to create an accurate CADx system for the 3-category classification. Source code of our CADx system is available as open source for COVID-19 research.

摘要

这项研究旨在开发和验证一种基于计算机的诊断(CADx)系统,用于对胸部 X 射线(CXR)图像上的 COVID-19 肺炎、非 COVID-19 肺炎和健康人群进行分类。从两个公共数据集获得了 1248 张 CXR 图像,其中包括 COVID-19 肺炎患者、非 COVID-19 肺炎患者和健康人群的 215、533 和 500 张 CXR 图像。所提出的 CADx 系统利用 VGG16 作为预训练模型,并结合传统方法和 mixup 作为数据增强方法。还比较了其他类型的预训练模型与基于 VGG16 的模型。还评估了单一类型或没有数据增强方法。在构建和评估 CADx 系统时使用了训练/验证/测试集的分割。使用包含 125 张 CXR 图像的测试集评估了三分类准确性。CAD 系统在 COVID-19 肺炎、非 COVID-19 肺炎和健康人群之间的三分类准确性为 83.6%。COVID-19 肺炎的敏感性超过 90%。传统方法和 mixup 的组合比单一类型或没有数据增强方法更有用。总之,本研究能够为三分类创建一个准确的 CADx 系统。我们的 CADx 系统的源代码作为 COVID-19 研究的开源提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3161/7567783/f96ead5902b9/41598_2020_74539_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验