IEEE Trans Med Imaging. 2021 Jan;40(1):193-204. doi: 10.1109/TMI.2020.3024264. Epub 2020 Dec 29.
Our objective is the calibration of mathematical tumor growth models from a single multiparametric scan. The target problem is the analysis of preoperative Glioblastoma (GBM) scans. To this end, we present a fully automatic tumor-growth calibration methodology that integrates a single-species reaction-diffusion partial differential equation (PDE) model for tumor progression with multiparametric Magnetic Resonance Imaging (mpMRI) scans to robustly extract patient specific biomarkers i.e., estimates for (i) the tumor cell proliferation rate, (ii) the tumor cell migration rate, and (iii) the original, localized site(s) of tumor initiation. Our method is based on a sparse reconstruction algorithm for the tumor initial location (TIL). This problem is particularly challenging due to nonlinearity, ill-posedeness, and ill conditioning. We propose a coarse-to-fine multi-resolution continuation scheme with parameter decomposition to stabilize the inversion. We demonstrate robustness and practicality of our method by applying the proposed method to clinical data of 206 GBM patients. We analyze the extracted biomarkers and relate tumor origin with patient overall survival by mapping the former into a common atlas space. We present preliminary results that suggest improved accuracy for prediction of patient overall survival when a set of imaging features is augmented with estimated biophysical parameters. All extracted features, tumor initial positions, and biophysical growth parameters are made publicly available for further analysis. To our knowledge, this is the first fully automatic scheme that can handle multifocal tumors and can localize the TIL to a few millimeters.
我们的目标是从单一的多参数扫描中校准数学肿瘤生长模型。目标问题是分析术前胶质母细胞瘤(GBM)扫描。为此,我们提出了一种全自动的肿瘤生长校准方法,该方法将用于肿瘤进展的单物种反应扩散偏微分方程(PDE)模型与多参数磁共振成像(mpMRI)扫描相结合,从而稳健地提取患者特定的生物标志物,即(i)肿瘤细胞增殖率、(ii)肿瘤细胞迁移率以及(iii)肿瘤起始的原始局部位置的估计值。我们的方法基于肿瘤初始位置(TIL)的稀疏重建算法。由于非线性、病态和不适定性,这个问题特别具有挑战性。我们提出了一种带有参数分解的粗到细多分辨率连续方案来稳定反演。我们通过将所提出的方法应用于 206 名 GBM 患者的临床数据,证明了我们方法的稳健性和实用性。我们分析了提取的生物标志物,并通过将前者映射到公共图谱空间来将肿瘤起源与患者总生存期相关联。我们提出了初步结果,表明当一组成像特征与估计的生物物理参数相结合时,可以提高对患者总生存期预测的准确性。所有提取的特征、肿瘤初始位置和生物物理生长参数都可供进一步分析使用。据我们所知,这是第一个能够处理多焦点肿瘤并将 TIL 定位到几毫米的全自动方案。