Suppr超能文献

使用单次 mpMRI 扫描实现肿瘤生长模型的全自动校准。

Fully Automatic Calibration of Tumor-Growth Models Using a Single mpMRI Scan.

出版信息

IEEE Trans Med Imaging. 2021 Jan;40(1):193-204. doi: 10.1109/TMI.2020.3024264. Epub 2020 Dec 29.

Abstract

Our objective is the calibration of mathematical tumor growth models from a single multiparametric scan. The target problem is the analysis of preoperative Glioblastoma (GBM) scans. To this end, we present a fully automatic tumor-growth calibration methodology that integrates a single-species reaction-diffusion partial differential equation (PDE) model for tumor progression with multiparametric Magnetic Resonance Imaging (mpMRI) scans to robustly extract patient specific biomarkers i.e., estimates for (i) the tumor cell proliferation rate, (ii) the tumor cell migration rate, and (iii) the original, localized site(s) of tumor initiation. Our method is based on a sparse reconstruction algorithm for the tumor initial location (TIL). This problem is particularly challenging due to nonlinearity, ill-posedeness, and ill conditioning. We propose a coarse-to-fine multi-resolution continuation scheme with parameter decomposition to stabilize the inversion. We demonstrate robustness and practicality of our method by applying the proposed method to clinical data of 206 GBM patients. We analyze the extracted biomarkers and relate tumor origin with patient overall survival by mapping the former into a common atlas space. We present preliminary results that suggest improved accuracy for prediction of patient overall survival when a set of imaging features is augmented with estimated biophysical parameters. All extracted features, tumor initial positions, and biophysical growth parameters are made publicly available for further analysis. To our knowledge, this is the first fully automatic scheme that can handle multifocal tumors and can localize the TIL to a few millimeters.

摘要

我们的目标是从单一的多参数扫描中校准数学肿瘤生长模型。目标问题是分析术前胶质母细胞瘤(GBM)扫描。为此,我们提出了一种全自动的肿瘤生长校准方法,该方法将用于肿瘤进展的单物种反应扩散偏微分方程(PDE)模型与多参数磁共振成像(mpMRI)扫描相结合,从而稳健地提取患者特定的生物标志物,即(i)肿瘤细胞增殖率、(ii)肿瘤细胞迁移率以及(iii)肿瘤起始的原始局部位置的估计值。我们的方法基于肿瘤初始位置(TIL)的稀疏重建算法。由于非线性、病态和不适定性,这个问题特别具有挑战性。我们提出了一种带有参数分解的粗到细多分辨率连续方案来稳定反演。我们通过将所提出的方法应用于 206 名 GBM 患者的临床数据,证明了我们方法的稳健性和实用性。我们分析了提取的生物标志物,并通过将前者映射到公共图谱空间来将肿瘤起源与患者总生存期相关联。我们提出了初步结果,表明当一组成像特征与估计的生物物理参数相结合时,可以提高对患者总生存期预测的准确性。所有提取的特征、肿瘤初始位置和生物物理生长参数都可供进一步分析使用。据我们所知,这是第一个能够处理多焦点肿瘤并将 TIL 定位到几毫米的全自动方案。

相似文献

2
Ensemble Inversion for Brain Tumor Growth Models With Mass Effect.具有质量效应的脑肿瘤生长模型的集成反演。
IEEE Trans Med Imaging. 2023 Apr;42(4):982-995. doi: 10.1109/TMI.2022.3221913. Epub 2023 Apr 3.
3
Multiatlas Calibration of Biophysical Brain Tumor Growth Models with Mass Effect.具有质量效应的生物物理脑肿瘤生长模型的多图谱校准
Med Image Comput Comput Assist Interv. 2020 Oct;12262:551-560. doi: 10.1007/978-3-030-59713-9_53. Epub 2020 Sep 29.
5
IMAGE-DRIVEN BIOPHYSICAL TUMOR GROWTH MODEL CALIBRATION.图像驱动的生物物理肿瘤生长模型校准
SIAM J Sci Comput. 2020;42(3):B549-B580. doi: 10.1137/19M1275280. Epub 2020 May 6.

引用本文的文献

6
Designing clinical trials for patients who are not average.为非普通患者设计临床试验。
iScience. 2023 Nov 29;27(1):108589. doi: 10.1016/j.isci.2023.108589. eCollection 2024 Jan 19.
7
Ensemble Inversion for Brain Tumor Growth Models With Mass Effect.具有质量效应的脑肿瘤生长模型的集成反演。
IEEE Trans Med Imaging. 2023 Apr;42(4):982-995. doi: 10.1109/TMI.2022.3221913. Epub 2023 Apr 3.

本文引用的文献

3
Coupling brain-tumor biophysical models and diffeomorphic image registration.耦合脑肿瘤生物物理模型与微分同胚图像配准
Comput Methods Appl Mech Eng. 2019 Apr 15;347:533-567. doi: 10.1016/j.cma.2018.12.008. Epub 2019 Jan 7.
6
The 2019 mathematical oncology roadmap.2019 年数学肿瘤学路线图。
Phys Biol. 2019 Jun 19;16(4):041005. doi: 10.1088/1478-3975/ab1a09.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验